Beijing, China – With 19% of the world’s population but only 7% of its arable land, China is in a bind: how to feed its growing and increasingly affluent population while protecting its natural resources. The country’s agricultural scientists have made growing use of nuclear and isotopic techniques in crop production over the last decades. In cooperation with the IAEA and the Food and Agriculture Organization of the United Nations (FAO), they are now helping experts from Asia and beyond in the development of new crop varieties, using irradiation.
While in many countries, nuclear research in agriculture is carried out by nuclear agencies that work independently from the country’s agriculture research establishment, in China the use of nuclear techniques in agriculture is integrated into the work of the Chinese Academy of Agricultural Sciences (CAAS) and provincial academies of agricultural sciences. This ensures that the findings are put to use immediately.
And indeed, the second most widely used wheat mutant variety in China, Luyuan 502, was developed by CAAS’s Institute of Crop Sciences and the Institute of Shandong Academy of Agricultural Sciences, using space-induced mutation breeding (see Space-induced mutation breeding). It has a yield that is 11% higher than the traditional variety and is also more tolerant to drought and main diseases, said Luxiang Liu, Deputy Director General of the Institute. It has been planted on over 3.6 million hectares – almost as large as Switzerland. It is one of 11 wheat varieties developed for improved salt and drought tolerance, grain quality and yield, Mr Liu said.
Through close cooperation with the IAEA and FAO, China has released over 1,000 mutant crop varieties in the past 60 years, and varieties developed in China account for a fourth of mutants listed currently in the IAEA/FAO’s database of mutant varieties produced worldwide, said Sobhana Sivasankar, Head of the Plant Breeding and Genetics Section at the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The new mutation induction and high-throughput mutant selection approaches established at the Institute serve as a model to researchers from around the world, she added.
The Institute uses heavy ion beam accelerators, cosmic rays and gamma rays along with chemicals to induce mutations in a wide variety of crops, including wheat, rice, maize, soybean and vegetables. “Nuclear techniques are at the heart of our work, fully integrated into the development of plant varieties for the improvement of food security,” Liu said.
The Institute has also become a key contributor to the IAEA technical cooperation programme over the years: more than 150 plant breeders from over 30 countries have participated in training courses and benefited from fellowships at CAAS.
Indonesia’s nuclear agency, BATAN, and CAAS are looking for ways to collaborate on plant mutation breeding and Indonesian researchers are looking for ways to learn from China’s experience, said Totti Tjiptosumirat, Head of BATAN’s Center for Isotopes and Radiation Application. “Active dissemination and promotion of China’s activities in plant mutation breeding would benefit agricultural research across Asia,” he said.