A sandy vacant lot lined by greenery in Tashkent, Uzbekistan may look like it’s ready to welcome a new construction project, but this empty space is the result of the decommissioning of IIN-3M, a retired research reactor.
“A decision was made to decommission the IIN-3M reactor, since it had rarely been used in recent years, the equipment was obsolete and it was located near an airport that officials were considering expanding,” said Fakhrulla Kungurov, Laboratory Head at the Institute of Nuclear Physics of the Uzbekistan Academy of Sciences. “No nuclear installation had ever been decommissioned in Uzbekistan before. The IAEA supported us during each step of the process, assisting in instances where we lacked the necessary experience and knowledge.”
Decommissioning the IIN-3M reactor at Uzbekistan’s Radiation and Technological Complex (RTC) began in 2015 and ended in 2019. This process involved decontaminating, dismantling and demolishing the facility to release it, and its site, from regulatory control. The reactor had ceased operation in 2013 after being primarily used to test semiconductors and other devices since 1975. It is one of two research reactors in the country, with the second still in operation.
Research reactors provide a neutron source intended for applications in, for example, industry, medicine, research and education and training, in contrast to other larger nuclear reactors designed for power generation. When they have served their purpose and are retired, they need to be decommissioned, just like any other nuclear installation. The objective of decommissioning is to remove all sources of radioactivity, contaminated material and other structures so the site can be used for other purposes.
More than 60% of operating research reactors are now over 40 years old. The growing number of ageing reactors has resulted in increased decommissioning activity worldwide; there are currently over 220 research reactors in operation, while 443 have been decommissioned.
Countries may choose to decommission research reactors for a variety of reasons, such as the prohibitive costs of extending their lifetime for continuing operation, lack of funding or outdated technology, whereas others may decide to renovate and keep them in operation to continue benefiting from their use. However, an action plan is needed irrespective of whether operators and authorities decide to decommission an existing reactor now or much later in the future.
Upon request, the IAEA offers support and expertise to countries to ensure that they are well prepared to handle decommissioning safely and securely, said Vladimir Michal, a decommissioning team leader at the IAEA. In addition, the IAEA issues safety standards and reference publications that offer guidance and share good practices in this area, he said.
“Countries decide for themselves whether to continue operation or to shut down a reactor, but what’s crucial is to decommission reactors that are no longer in operation,” said Michal. “Not decommissioning idle research reactors, or doing so improperly, can result in their structural deterioration and an increased risk for people and the environment.”
No nuclear installation had ever been decommissioned in Uzbekistan before. The IAEA supported us during each step of the process, assisting in instances where we lacked the necessary experience and knowledge.