Radiation - what patients need to know
Radioactivity is a part of our earth - it has existed all along. Naturally occurring radioactive materials are present in its crust, the floors and walls of our homes, schools, or offices and in the food we eat and drink. There are radioactive gases in the air we breathe. Our own bodies - muscles, bones, and tissue - contain naturally occurring radioactive elements.
Man has always been exposed to natural radiation arising from the earth as well as from outside the earth. The radiation we receive from outer space is called cosmic radiation or cosmic rays.
We also receive exposure from man-made radiation, such as X-rays, radiation used to diagnose diseases and for cancer therapy. Fallout from nuclear explosives testing, and small quantities of radioactive materials released to the environment from coal and nuclear power plants, are also sources of radiation exposure to man.
Radioactivity is the term used to describe disintegration of atoms. The atom can be characterized by the number of protons in the nucleus. Some natural elements are unstable. Therefore, their nuclei disintegrate or decay, thus releasing energy in the form of radiation. This physical phenomenon is called radioactivity and the radioactive atoms are called nuclei. The radioactive decay is expressed in units called becquerels. One becquerel equals one disintegration per second.
The radionuclides decay at a characteristic rate that remains constant regardless of external influences, such as temperature or pressure. The time that it takes for half the radionuclides to disintegrate or decay is called half-life. This differs for each radioelement, ranging from fractions of a second to billions of years. For example, the half-life of Iodine 131 is eight days, but for Uranium 238, which is present in varying amounts all over the world, it is 4.5 billion years. Potassium 40, the main source of radioactivity in our bodies, has a half-life of 1.42 billion years.
The use of radiation and nuclear techniques in medicine, industry, agriculture, energy and other scientific and technological fields has brought tremendous benefits to society. The benefits in medicine for diagnosis and treatment in terms of human lives saved are enormous. Radiation is a key tool in the treatment of certain kinds of cancer. Three out of every four patients hospitalized in the industrial countries benefit from some form of nuclear medicine.