HTGR Reactor Physics, Thermal-Hydraulics and Depletion Uncertainty Analysis

Closed for proposals

Project Type

Coordinated Research Project

Project Code

I31020

CRP

1866

Approved Date

11 November 2011

Status

3 - Active - Ongoing

Start Date

19 April 2012

Expected End Date

18 April 2019

Participating Countries

China
Germany
Poland
Republic of Korea
Russian Federation
South Africa
United States of America

Description

The continued development of the High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, and modelling and computational algorithms. SA is helpful to partition the prediction uncertainty to various contributing sources of uncertainty and error. SA and UA is required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more general and well validated calculation tools to meet design target accuracies.

Objectives

To contribute new knowledge towards improving the fidelity of calculation models in the design and safety analysis of high temperature gas-cooled reactors by fully accounting for all sources of uncertainty in calculations.

Specific objectives

To determine the uncertainty in HTGR calculations at all stages of coupled reactor physics/thermal hydraulics and depletion calculations. In order to accomplish this objective a benchmark platform for uncertainty analysis in best-estimate coupled code calculations for design and safety analysis of HTGRs will be defined and utilized. The full chain of uncertainty propagation from basic data, engineering uncertainties, across different scales (multi-scale), and physics phenomena (multi-physics) will be tested on a number of benchmark exercises with maximum utilization of the available experimental data, published benchmark results and released design details.

To determine the uncertainty in HTGR calculations at all stages of coupled reactor physics/thermal hydraulics and depletion calculations. In order to accomplish this objective a benchmark platform for uncertainty analysis in best-estimate coupled code calculations for design and safety analysis of HTGRs will be defined and utilized. The full chain of uncertainty propagation from basic data, engineering uncertainties, across different scales (multi-scale), and physics phenomena (multi-physics) will be tested on a number of benchmark exercises with maximum utilization of the available experimental data, published benchmark results and released design details.

Contact the project officer

Image CAPTCHA

Stay in touch

Newsletter