Optimising Radiotherapy

Improving outcome and reducing side-effects

Dr Julie Wetter
Dept Radiation Oncology
Groote Schuur Hospital
University of Cape Town

19–20 September 2017
IAEA Scientific Forum
Nuclear Techniques in Human Health
Prevention, Diagnosis, Treatment
Overview

The Benefits of Providing External Beam Radiotherapy in Low- and Middle-income Countries

*Ingham Institute for Applied Medical Research, University of New South Wales, Liverpool, New South Wales, Australia
1 Liverpool and Macarthur Cancer Therapy Centres, Western Sydney University, Campbelltown, New South Wales, Australia
1 Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
3 International Agency for Research on Cancer, Lyon, France

Received 2 September 2015; received in revised form 7 November 2015; accepted 7 November 2015
It is not only about getting there faster...

2D Planning
3D Planning
IMRT / VMAT

Improved tumour control

Increased risk!
It is also about getting there safely...

This what we want to avoid: severe late side-effects

- Skin necrosis
- IQ decline after brain RT (children)
- Growth deformities
- Osteoradionecrosis
- Radiation-induced malignancies

Quality Assurance is key!
Cancer of the prostate
How treatment fields have evolved

The aim of modern radiotherapy: to deliver an effective dose to the tumour – with as low a dose to normal tissue as possible.
We need to *kill* cancer cells **AND** *protect* normal cells

- Lead cut-out
- Lead blocks
- Multi-leaf collimator
- Shield normal tissue

A BALANCE BETWEEN
- Tumour control
- Accurate and reproducible positioning

Complications

BETWEEN

Computerised planning
2-Dimensional Planning

Cobalt-60 machine

Radiation fields (shaped with lead blocks)

Field drawn in on Xrays

Hand-drawn 2 D plan

Until “recently” world-wide ...
(Still used in many LMI countries)
3-Dimensional Conformal Radiotherapy

The aim of modern radiotherapy techniques:

- **Highest** possible dose to the tumour & **lowest** possible dose to normal tissue

Visualising the target area accurately is key...

- Sophisticated planning tools
- Reconstruction in all planes
- Multiple beams
- Different planes
- Beam shapers
- Highly skilled staff

- Cobalt-60 teletherapy
- Linear Accelerator (6MV Xrays)
Cancer of the prostate
Outcomes of 2D vs 3D planning

Tumour control improves with increasing dose

Complications decrease with 3D radiotherapy

Zelefsky, IJROBP 1999
Dearneley et al, Lancet 1999
The Next Step …

Intensity Modulated RT & Arc Therapy (VMAT)

- Sophisticated computer software works out the beam arrangement
 - gives the optimal dose to the tumour
 - while keeping the dose to normal structures within tolerance
- The beam shaper now also filters (modulates) the beam
- The machine rotates around the patient during treatment – which can take as little as two minutes

Higher dose and tighter margins than previously possible

Shorter treatment time – therefore more patients treated per day
ARC Therapy (VMAT)
ARC Therapy (VMAT)
Modern Radiotherapy requires a TEAM of highly skilled people

A treatment plan is only as good as it’s quality assurance
Stereotactic Radiosurgery

- High dose of radiation
- Single dose
- Small target
- Brain & eye tumours
Stereotactic Body Radiotherapy

Single / multiple tumours

Infra-red cameras & X-rays localise points on skeleton

Computer ensures patient is accurately positioned for treatment
Brachytherapy

Sealed radioactive sources (radio-isotopes) placed adjacent to, or into, a tumour

- Dose around the applicator (tumour) is **high**
- Dose a short distance from the applicator (healthy organs) is **low**
- Can combine with Xrays / surgery

Cervix cancer

Skin cancer

Prostate cancer

Sarcoma

Remote after-loader
Head & neck cancers

Eye cancers

Tumour of the soft palate

Radioactive iodine orbital implant

2 years later

Radioactive iodine eye plaque

Also used to treat cancer of the oesophagus, bronchus
We have come a long way ...