Millions of malnourished children in developing countries will never lead healthy, happy lives due to ‘hidden hunger’ caused by an insufficient amount of micronutrients in their diets. Micronutrients, such as vitamin A, zinc, and iron are more abundant in the diverse diets enjoyed by affluent populations—these micronutrients quietly do their work to help children grow, develop cognitive skills, and build their immune systems. Their presence, beneath the demeanour of a happy well-nourished child, goes unnoticed. However, the same cannot be said of their absence. During the accelerated growth phases from infancy through adolescence, micronutrient deficiencies can leave children ill, stunted, or even blind, and diminish their prospects for a healthy and productive adulthood.

Fortifying foods and providing supplements are the main strategies used to reduce hidden hunger. However, the reach of these interventions can be quite limited, especially in rural areas of developing countries where most of the poor live. Biofortification is a promising innovation that could help fight hidden hunger especially in rural areas.

Researchers know that the rural poor consume large amounts of staple food crops, such as rice, or sweet potato, foods that do not provide them with enough micronutrients. Through a process called biofortification, scientists are now breeding staple foods with higher micronutrient content.

HarvestPlus, a global leader in biofortification, is leveraging a worldwide network of scientists to breed and disseminate new biofortified varieties of staple food crops that are rich in vitamin A, zinc, or iron. By targeting staple food crops that are already important in people’s diets, HarvestPlus believes it will be easier—and more cost-effective—to reduce hidden hunger in rural areas by integrating these new foods into the lives of the poor. Along with fortification, supplementation,
and other efforts to diversify diets, biofortification could be an effective tool in helping to prevent, or reduce, hidden hunger.

Plant breeders must taken into account several factors when they set nutrient target levels for staple food crops. Among these are:

✦ post-harvest nutrient loss from crops during storage, processing and cooking;

✦ micronutrient bioavailability (how much of the nutrient is absorbed when the food is eaten), and

✦ bioefficacy—how the increased intake of micronutrients increases nutrient stores in the body and prevents outcomes associated with micronutrient deficiency.

This data is lacking for many crops, but is essential if plant breeders are to breed sufficient amounts of micronutrients into food crops, so that consuming normal amounts of these foods will provide a substantial proportion of daily micronutrient requirements.

It is at this critical juncture, that the IAEA is helping HarvestPlus move towards its goal. While animal models may be useful for studying mechanisms of absorption and conversion, scientists cannot directly extrapolate their results to humans. Ultimately, researchers will need to conduct complex human efficacy trials requiring large numbers of participants, longer consumption periods, and difficult logistics for monitoring consumption of the test foods to provide the burden of proof for the biofortification strategy. However, stable isotope tracer studies can provide direct estimates of the bioavailability of micronutrients in humans far more quickly and cheaply than long-term efficacy trials. Furthermore, they can be used to estimate the potential impact of biofortified foods in the dietary contexts typical of rural, developing country populations, as there are many dietary factors that can limit micronutrient bioavailability.

“Stable isotope tracer techniques constitute a useful intermediate step that can provide us with physiological data to help predict the impact of biofortification in the long-term on micronutrient status,” says Dr. Erick Boy, nutrition coordinator at HarvestPlus, “and IAEA has considerable expertise in this field.”

In 2004, HarvestPlus and IAEA launched their first research partnership, which analyzed the contribution of biofortified staple food crops to micronutrient status in adult women using stable isotope tracer techniques.

One of the first collaborative projects was on orange sweet potato, which is emerging as a biofortification success story. It has been demonstrated that orange sweet potato biofortified with provitamin A (hence the orange color) increases vitamin A intake and vitamin A status of deficient individuals, compared to traditional white varieties that are popular in Africa. This is encouraging news, given that thousands of children in Africa go blind every year from vitamin A deficiency. Fat is required to facilitate the absorption of vitamin A, but fat intakes tend to be lower in developing country populations than in more affluent populations, which may also contribute to inadequate vitamin A status among the
HarvestPlus is an international research program that seeks to reduce micronutrient malnutrition by breeding biofortified staple food crops that are rich in micronutrients. It is a Challenge Program of the Consultative Group for International Agricultural Research. It is co-convened by the International Center for Tropical Agriculture (CIAT) and the International Food Policy Research Institute (IFPRI).

For further information visit: www.harvestplus.org

Yassir Islam is Communications Specialist and Christine Hotz is Senior Nutritionist at HarvestPlus. E-mails: Y.Islam@cgiar.org; C.Hotz@cgiar.org.

A zinc stable isotope tracer study supported by HarvestPlus and IAEA confirmed, however, that a proportionate amount of zinc from biofortified wheat products provided a proportionately greater amount of absorbed zinc, regardless of whether the wheat was refined or unrefined.

Furthermore, millions of people in remote regions of the developing world also lack diversity in their diets simply due to their isolation, marginal agricultural conditions, and the seasonal availability of many foods. Biofortified staple food crops can help bridge the micronutrient gap, providing people with a larger proportion of their daily micronutrient requirements through the foods that they already grow and eat.

Yassir Islam is Communications Specialist and Christine Hotz is Senior Nutritionist at HarvestPlus. E-mails: Y.Islam@cgiar.org; C.Hotz@cgiar.org.
Atoms for Peace: A Pictorial History of the International Atomic Energy Agency

The book addresses the fundamental concepts that underline the work of the IAEA — the natural evolution of security and development as the two aspects of the same ideal: “Atoms for Peace”. The successes and challenges that have shaped the organization over the past half century are recorded and key events from the IAEA’s past and present are detailed. These include: President Eisenhower’s ‘Atoms for Peace’ speech, the establishment of safeguards regimes, the international response to the Chernobyl accident and the awarding of the Nobel Peace Prize in 2005, as well as ongoing endeavours in fields ranging from sustainable energy production to human health and agricultural productivity.

To commemorate its first 50 years
the IAEA has issued a photographic history of the organization and its work:

Atoms for Peace: A Pictorial History of the International Atomic Energy Agency

To order the book or request more information, please contact:

Sales and Promotion Unit
F0855, Publishing Section
International Atomic Energy Agency
P.O. Box 100
A-1400 Vienna, Austria
Tel.: +43-1-2600-22529/22530
Fax: +43-1-2600-29302
E-mail: sales.publications@iaea.org
www.iaea.org/books/50thAnnBook

Price: €50