

Информационный циркуляр

INFCIRC/931

3 марта 2020 года

Общее распространение

Русский

Язык оригинала: английский

Сообщение Постоянного представительства Китайской Народной Республики от 13 февраля 2020 года в связи со «Спецификациями радиационной стерилизации одноразовой защитной одежды для использования в медицинских целях во время чрезвычайных ситуаций (предварительный вариант)»

- 1. Секретариат получил от Постоянного представительства Китайской Народной Республики при Агентстве сообщение от 13 февраля 2020 года, к которому прилагается документ, озаглавленный «Спецификации радиационной стерилизации одноразовой защитной одежды для использования в медицинских целях во время чрезвычайных ситуаций (предварительный вариант)», и в котором содержится просьба к Секретариату распространить этот предварительный вариант спецификаций среди всех государств членов МАГАТЭ.
- 2. В соответствии с данной просьбой это сообщение и предварительный вариант спецификаций настоящим распространяются для сведения всех государств-членов.

ПОСТОЯННОЕ ПРЕДСТАВИТЕЛЬСТВО КИТАЙСКОЙ НАРОДНОЙ РЕСПУБЛИКИ ПРИ МЕЖДУНАРОДНОМ АГЕНТСТВЕ ПО АТОМНОЙ ЭНЕРГИИ

CPM-T2-2020-4

13 февраля 2020 года

Уважаемая г-жа Наджат МОХТАР,

В продолжающейся борьбе Китая с эпидемией COVID2019 для быстрой, безотходной и экологически чистой стерилизации медицинских изделий и принадлежностей применяется технология ядерного облучения. Это эффективным образом помогает обеспечить безопасность и качество защитной одежды и сохранить здоровье медицинского персонала, работающего на переднем крае борьбы с эпидемией.

7 февраля три китайских государственных ведомства, а именно Министерство промышленности и информационных технологий, Национальное управление по медицинским изделиям и Национальная комиссия по здравоохранению, совместно опубликовали Спецификации радиационной стерилизации одноразовой защитной одежды для использования в медицинских целях во время чрезвычайных ситуаций (предварительный вариант) (далее именуемые «спецификации»). Они призваны стандартизировать использование радиационной стерилизации в качестве экстренной альтернативы стерилизации оксидом этилена, применяемой в отношении защитной одежды, чтобы обеспечить соответствие стерилизованной облучением защитной одежды требованиям качества. Печатный экземпляр спецификаций прилагается.

Будем признательны за Вашу помощь в содействии распространению спецификаций и опыта Китая в борьбе с эпидемией путем использования ядерных технологий среди заинтересованных государств — членов Агентства.

Примите уверения в моем самом высоком уважении.

С уважением,

[Подпись]

ЛИ Сэнь Советник-посланник Постоянное представительство Китая при МАГАТЭ

Г-же Наджат МОХТАР Заместителю Генерального директора Руководителю Департамента ядерных наук и применений МАГАТЭ

Спецификации радиационной стерилизации одноразовой защитной одежды для использования в медицинских целях во время чрезвычайных ситуаций (предварительный вариант)

1. Цель

Настоящие спецификации разработаны и введены в действие для обеспечения эффективного контроля радиационной стерилизации одноразовой защитной одежды для использования в медицинских целях во время чрезвычайных ситуаций, чтобы одноразовая защитная одежда для использования в медицинских целях, стерилизованная облучением в экстренных условиях, соответствовала требованиям качества. Метод радиационной стерилизации, описанный в настоящих спецификациях, использоваться экстренной может В качестве альтернативы стерилизации оксидом этилена в ходе борьбы с эпидемией пневмонии, вызываемой новым типом коронавируса (далее именуемой «эпидемия»). Настоящие спецификации утрачивают свою силу по окончании борьбы с эпидемией.

2. Сфера применения

Настоящие спецификации применимы только к временной стерилизации одноразовой защитной одежды для использования в медицинских целях, не прошедшей стерилизацию радиационным методом до эпидемии, с целью удовлетворить экстренный спрос

в рамках борьбы с эпидемией. Одноразовая защитная одежда для использования в медицинских целях, облученная в соответствии с настоящими спецификациями, считается отвечающей требованиям пункта 4 документа GB 19082-2009 «Technical Requirements For Single-Use Protective Clothing For Medical Use» («Технические требования в отношении одноразовой защитной одежды для использования в медицинских целях»).

3. Налаживание, осуществление и контроль процесса радиационной стерилизации

3.1 Выбор изделия

Чтобы определить бионагрузку, для отдельных изделий используется индивидуальный упаковочный комплект. Если это применимо, отдельные изделия тестируются в своей совокупности. В основе метода тестирования бионагрузки и определения количества тестируемого образца лежит стандартный метод. Для тестирования бионагрузки рекомендуется использовать как минимум три образца. В целях установления дозы стерилизации средняя бионагрузка на все изделие определяется как бионагрузка на отдельное изделие (среднее значение для партии) или количественный результат тестирования бионагрузки при плановом контроле качества производства.

3.2 Установление дозы стерилизации

Доза излучения (кГр), необходимая для того, чтобы изделие соответствовало установленному уровню обеспечения стерильности, рассчитывается на основе таблицы 5, содержащейся в документе

GB18280.2–2015 «Sterilization of Health Care Products: Radiation — Part 2: Establishing Sterilization Dose» («Стерилизация изделий для целей здравоохранения. Излучение — часть 2. Установление дозы стерилизации»). В рамках реагирования на эпидемию, учитывая, что одноразовая защитная одежда для использования в медицинских целях предназначена только для защиты поверхности тела, в качестве дозы стерилизации рекомендуется доза на уровне обеспечения стерильности в размере 10⁻³, которая может корректироваться на более позднем этапе в зависимости от результата стерилизации.

3.3 Максимально допустимая доза сообщается изготовителем изделия исходя из результатов тестирования материалов, использованных в изделии. Для материалов из СМС, СММС и полиэтилена максимально допустимая доза не превышает 50 кГр. Максимально допустимая доза для других материалов определяется исходя из результатов тестирования соответствующих материалов.

3.4 Облучение

3.4.1 Определение диапазона доз излучения

Необходимая минимальная и максимальная доза излучения определяется исходя из установленных доз стерилизации и максимально допустимой дозы.

3.4.2 Разработка плана картирования доз и подготовка спецификации процесса облучения

Для определения значений максимальных и минимальных доз и соотношения между точкой планового мониторинга (если таковая

используется) и минимальными и максимальными дозами проводится картирование доз. Готовятся соответствующие отчеты и спецификации процесса облучения.

3.4.3 Получение изделий

Номер партии, инструкции по переработке, количество изделий, количество образцов и любые повреждения изделий проверяются в соответствии с задокументированными процедурами при получении изделий.

3.4.4 Хранение изделий

Необлученные и облученные изделия физически разделяются. Зоны хранения четко обозначаются.

3.4.5 Организация облучения изделий

План облучения составляется рациональным образом для обеспечения того, чтобы поглощенная изделием доза находилась в требуемых пределах.

3.4.6 Процесс облучения

- а) Изделие загружается согласно схеме загрузки облучательного контейнера, содержащейся в спецификации данного процесса;
- b) дозиметры размещаются в соответствии со спецификацией данного процесса;
- с) в случае необходимости ящик с изделием, оснащенный биологическим индикатором быстрого считывания, помещается в зону минимальной дозы, или же биологический индикатор быстрого считывания устанавливается в позицию минимальной дозы;

d) изделие, используемое при моделировании, заполняется для обеспечения того, чтобы фактическая поглощенная доза не превышала максимальную допустимую дозу, ДЛЯ пользователя, облучательный контейнер загружен частично и максимальная доза в частично загруженном облучательном контейнере превышает максимальную полностью загруженном облучательном дозу В контейнере.

3.4.7 Прерывание облучения

В случает прерывания процесса, вследствие чего облучательный контейнер должен быть перемещен вручную для восстановления состояния до такого прерывания, регистрируются соответствующие корректирующие действия и позиции облучательного контейнера на момент прерывания и после восстановления. В случае необходимости оценивается результирующее воздействие на данный процесс.

3.4.8 Выгрузка изделий

При выгрузке изделий из облучательной установки необходимо:

- а) подтвердить количество изделий;
- b) в случае необходимости установить подставку в соответствии с установленными спецификациями;
- с) убрать дозиметры, проверить правильность размещения. В случае необходимости оставить дозиметр до измерения;
 - d) выявить поврежденные изделия;
- е) определить состояние изделий и поместить их на хранение в соответствующую указанную зону.

3.4.9 Измерение дозы

- а) Выбирается подходящая калиброванная дозиметрическая измерительная система, которая может быть прослежена в соответствии с национальными или международными стандартами. Устанавливается и регистрируется общая неопределенность измерения дозы;
 - b) измеряется доза излучения, регистрируется результат.
 - 3.4.10 Подтверждение стерилизации
- а) Процесс облучения проверяется на предмет соответствия спецификации данного процесса;
- b) минимальная и максимальная дозы, поглощенные изделием, проверяются на предмет соответствия установленным требованиям.

3.4.11 Регистрация данных в связи с облучением

После завершения облучения квалифицированный персонал представляет, проверяет и утверждает данные, полученные по результатам облучения. Такие данные включают:

- а) записи о получении изделий;
- b) подтверждение количества изделий, записи о несоответствиях и предпринятых действиях (если применимо);
 - с) записи о загрузке и выгрузке;
 - d) записи о процессе;
- е) данные об отклонениях от процесса и соответствующих изысканиях и корректирующих действиях;
 - f) данные об анализе дозы;

- g) сертификат доставленной дозы;
- h) подпись уполномоченного лица, выдающего разрешение.

3.4.12 Транспортировка

После завершения облучения, прежде чем отправить изделие изготовителю, выполняются следующие действия:

- а) при получении, загрузке и выгрузке изделий и перед их транспортировкой подсчитывается их количество и регистрируются несоответствия;
- b) в случае необходимости поврежденные изделия выявляются и проверяются;
- с) процесс стерилизации изделий осуществляется квалифицированным персоналом.
- 3.5 В соответствии с требованиями производителя изделия в ящик с изделием могут быть помещены биологические индикаторы быстрого считывания. Биологические индикаторы быстрого считывания могут быть помещены в зону минимальной дозы, указанную при картировании доз.

4. Условия выпуска изделия

4.1 Процесс облучения соответствует настоящим спецификациям, облучение проводится в соответствии с заданной дозой излучения для обеспечения того, чтобы доза, поглощенная изделием, не была меньше установленной дозы стерилизации и не превышала максимально допустимую дозу.

- 4.2 Показатели биологических индикаторов быстрого считывания являются негативными.
- 4.3 Результаты тестирования характеристик изделия как минимум соответствуют требованиям в отношении непроницаемости, устойчивости к проникновению синтетической крови, разрывной прочности и эффективности фильтрации, содержащимся в документе GB19082–2009 «Технические требования в отношении одноразовой защитной одежды для использования в медицинских целях».

5. Маркировка

Защитная одежда для использования в медицинских целях, стерилизованная облучением, маркируется специальным ярлыком с указанием даты стерилизации и срока действия в один месяц, помещаемым производителем на каждую внешнюю упаковку с изделиями, маркированная после чего эта одежда использоваться в изолированных отделениях (палатах) интенсивной терапии.

6. Справочные материалы

GB/T19000–2015/ISO9000:2015 Quality management system— Fundamentals and vocabulary (Системы менеджмента качества. Основные положения и словарь)

GB/T19001–2015/ISO9001:2015 Quality management system— Requirements (Системы менеджмента качества. Требования) YY/T 0287–2016/ISO13485:2016 Medical devices—Quality management systems —Requirements for regulatory purposes (Медицинские изделия. Системы менеджмента качества. Требования для целей регулирования)

GB/T18280.2–2015/ISO11137.2:2006 Sterilization of health care products — Radiation — Part 2: Establishing the sterilization dose (Стерилизация изделий для целей здравоохранения. Излучение — часть 2. Установление дозы стерилизации)

GB 19082–2009 Technical requirements for single-use protective clothing for medical use (Технические требования в отношении одноразовой защитной одежды для использования в медицинских целях)