

INFCIRC/241/Add.1

٥ حزيران/يونيه ٢٠١٨

نشرة إعلامية

توزيع عام عربي الأصل: انكليزي

بروتوكول إضافي للاتفاق المعقود بين حكومة مملكة تايلند والوكالة الدولية للطاقة الذرية لتطبيق الضمانات في إطار معاهدة عدم انتشار الأسلحة النووية

1- يرد نص البروتوكول الإضافي للاتفاق المعقود بين مملكة تايلند والوكالة الدولية للطاقة الذرية لتطبيق الضمانات في إطار معاهدة عدم انتشار الأسلحة النووية مستنسخاً في مرفق هذه الوثيقة لكي يطلع عليه جميع الأعضاء. وكان مجلس المحافظين قد أقر البروتوكول الإضافي في ٢٠ أيلول/سبتمبر ٢٠٠٥. ثم وُقع البروتوكول في ٢٢ أيلول/سبتمبر ٢٠٠٥ في فيينا بالنمسا.

٢- وبموجب المادة ١٧ من البروتوكول الإضافي بدأ نفاذ هذا البروتوكول في ١٧ تشرين الثاني/نوفمبر
 ٢٠١٧، وهو التاريخ الذي تلقت فيه الوكالة إخطاراً مكتوباً من تايلند يفيد بأنَّ تايلند قد استوفت المتطلبات القانونية والدستورية لبدء النفاذ.

ل يرد الاتفاق المذكور مستنسخاً في الوثيقة INFCIRC/241.

بروتوكول إضافي للاتفاق المعقود بين حكومة مملكة تايلند والوكالة الدولية للطاقة الذرية لتطبيق الضمانات في إطار معاهدة عدم انتشار الأسلحة النووية

لما كانت مملكة تايلند (التي ستدعى فيما يلي "تايلند") والوكالة الدولية للطاقة الذرية (التي ستدعى فيما يلي "الوكالة") طرفين في اتفاق معقود لتطبيق الضمانات في إطار معاهدة عدم انتشار الأسلحة النووية (سيدعى فيما يلي "اتفاق الضمانات") بدأ نفاذه في ١٦ أيار/مايو ١٩٧٤؛

وإدراكاً منهما لرغبة المجتمع الدولي في المضي في تعزيز عدم الانتشار النووي عن طريق توطيد فعالية نظام ضمانات الوكالة وتحسين كفاءته؛

وإذ تشيران إلى أنه يجب على الوكالة أن تراعي أثناء تنفيذ الضمانات الحاجة إلى ما يلي: تجنب إعاقة التنمية الاقتصادية والتكنولوجية لتايلند أو التعاون الدولي في مجال الأنشطة النووية السلمية، واحترام الأحكام المتعلقة بالصحة والأمان والحماية المادية وغيرها من الأحكام الأمنية السارية وحقوق الأفراد، واتخاذ جميع الاحتياطات التي تكفل حماية الأسرار التجارية والتكنولوجية والصناعية وغير ذلك من المعلومات السرية التي تصل إلى علمها؛

ولما كان يتعين أن يظل تواتر وكثافة الأنشطة المبينة في هذا البروتوكول عند الحد الأدنى المتسق مع هدف توطيد فعالية ضمانات الوكالة وتحسين كفاءتها؟

فإن تايلند والوكالة قد اتفقتا الأن على ما يلي:

العلاقة بين البروتوكول واتفاق الضمانات

المادة ١

تنطبق أحكام اتفاق الضمانات على هذا البروتوكول بقدر ما تكون متصلة بأحكام هذا البروتوكول ومتوافقة معها. وفي حالة تنازع أحكام اتفاق الضمانات مع أحكام هذا البروتوكول، فإن أحكام هذا البروتوكول هي التي تنطبق.

توفير المعلومات

المادة ٢

أ- تزود تايلند الوكالة بإعلان يحتوي على ما يلي:

- '۱' وصف عام لأنشطة البحث والتطوير المتعلقة بدورة الوقود النووي التي لا تنطوي على مواد نووية والمضطلع بها في أي بقعة والتي تتولى تايلند تمويلها أو- بالتحديد ترخيصها أو مراقبتها، أو المضطلع بها نيابة عنها؛ ومعلومات تحدد مكان تلك الأنشطة.
- 'Y' معلومات تحددها الوكالة على أساس الفوائد المتوقعة فيما يتعلق بالفعالية أو الكفاءة، ويتفق عليها مع تايلند، بشأن الأنشطة التشغيلية ذات الصلة بالضمانات، المضطلع بها في مرافق وفي أماكن واقعة خارج المرافق يشيع فيها استخدام مواد نووية.
- "" وصف عام لكل مبنى مقام في كل موقع، يتضمن أوجه استخدام المبنى ومحتويات المبنى إذا كانت محتوياته لا تتضح من هذا الوصف. ويتضمن الوصف خريطة للموقع.
- '٤' وصف لحجم العمليات المنفذة في كل مكان يشارك في الأنشطة المحددة في المرفق الأول بهذا البروتوكول.
- 'o' معلومات تحدد مكان مناجم ومصانع تركيز اليورانيوم ومصانع تركيز الثوريوم وحالتها التشغيلية وقدرتها الإنتاجية التقديرية السنوية والإنتاج السنوي الراهن لتلك المناجم والمصانع بالنسبة لتايلند ككل. وبناءً على طلب الوكالة تذكر تايلند الإنتاج السنوي الراهن لمنجم بعينه أو لمصنع تركيز بعينه. ولايستلزم تقديم تلك المعلومات إجراء حصر مفصّل للمواد النووية.
- '7' معلومات بشأن المواد المصدرية التي لم تصل إلى التركيب والنقاء المناسبين لصنع الوقود أو الإثرائها إثراء نظيرياً وذلك على النحو التالى:
- (أ) كميات تلك المواد سواء كانت تستخدم في أغراض نووية أو غير نووية وتركيبها الكيميائي وأوجه استخدامها الفعلي أو المزمع، بالنسبة لكل مكان في تايلند توجد فيه مثل هذه المواد بكميات تتجاوز عشرة أطنان مترية من اليورانيوم و/أو عشرين طناً

متريا من الثوريوم، وبالنسبة للأماكن الأخرى التي توجد بها كميات تزيد على طن متري واحد، مجموعها فيما يخص تايلند ككل، إذا كان مجموعها يتجاوز عشرة أطنان مترية من اليورانيوم أو عشرين طناً مترياً من الثوريوم. ولا يستلزم تقديم هذه المعلومات إجراء حصر مفصل للمواد النووية؛

- (ب) كميات كل عملية تصدير خارج تايلند لتلك المواد خصيصاً من أجل أغراض غير نووية والتركيب الكيميائي لتلك المواد ووجهتها، عندما تكون بكميات تتجاوز ما يلي:
- (۱) عشرة أطنان مترية من اليورانيوم، أو ما مجموعه يتجاوز خلال العام عشرة أطنان مترية بالنسبة لعمليات التصدير المتتابعة خارج تايلند من اليورانيوم المصدر إلى نفس الدولة والتى تقل كمية كل منها عن عشرة أطنان مترية؛
- (٢) عشرين طناً مترياً من الثوريوم، أو ما مجموعه يتجاوز خلال العام عشرين طناً مترياً بالنسبة لعمليات التصدير المتتابعة خارج تايلند من الثوريوم المصدر إلى نفس الدولة والتي تقل كمية كل منها عن عشرين طناً مترياً؛
- (ج) كميات كل عملية استيراد داخل تايلند لتلك المواد خصيصاً من أجل أغراض غير نووية والتركيب الكيميائي لتلك المواد ومكانها الراهن وأوجه استخدامها الفعلي أو المزمع، عندما تكون بكميات تتجاوز ما يلي:
- (۱) عشرة أطنان مترية من اليورانيوم، أو ما مجموعه يتجاوز خلال العام عشرة أطنان مترية بالنسبة لعمليات استيراد اليورانيوم المتتابعة داخل تايلند والتي تقل كمية كل منها عن عشرة أطنان مترية؛
- (٢) عشرين طناً مترياً من الثوريوم، أو ما مجموعه يتجاوز خلال العام عشرين طنا متريا بالنسبة لعمليات استيراد الثوريوم المتتابعة داخل تايلند والتي تقل كمية كل منها عن عشرين طناً مترياً؛

علماً بأنه لا يشترط تقديم معلومات عن مثل هذه المواد المعتزم استخدامها استخداماً غير نووي، بمجرد بلوغها شكل استخدامها النهائي غير النووي.

- 'V' (أ) معلومات بشأن كميات المواد النووية المعفاة من الضمانات بمقتضى المادة ٣٧ من اتفاق الضمانات وبشأن أوجه استخدامها وأماكنها؟
- (ب) معلومات (قد تأخذ شكل تقديرات) بشأن الكميات والاستخدامات في كل مكان بالنسبة للمواد النووية المعفاة من الضمانات بمقتضى الفقرة الفرعية (ب) من المادة ٣٦ من اتفاق الضمانات ولكنها لم تأخذ بعد شكل الاستخدام النهائي غير النووي، عندما تكون بكميات تتجاوز الكميات المذكورة في المادة ٣٧ من اتفاق الضمانات. ولا يستلزم تقديم هذه المعلومات إجراء حصر مفصل للمواد النووية.

- "A' معلومات بشأن المكان أو المعالجة الإضافية للنفايات المتوسطة أو القوية الإشعاع التي تحتوي على بلوتونيوم أو يورانيوم شديد الإثراء أو يورانيوم-٢٣٣ والتي رفعت عنها الضمانات بمقتضى المادة ١١ من اتفاق الضمانات. ولأغراض هذه الفقرة فإن عبارة "المعالجة الإضافية" لا تشمل عمليات إعادة تعبئة النفايات أو عمليات تكييفها الإضافي غير المنطوية على فصل العناصر، من أجل خزن النفايات أو التخلص منها.
- '9' معلومات بشأن الأنواع المحددة من المعدات والمواد غير النووية المسرودة في المرفق الثاني، وذلك على النحو التالي:
- (أ) بالنسبة لكل عملية تصدير خارج تايلند لتلك المعدات والمواد: هويتها، وكمياتها، ومكان استخدامها المزمع في الدولة المتلقية، وتاريخ التصدير أو تاريخ التصدير المتوقع حسب الاقتضاء؛
- (ب) بناءً على طلب محدد تقدمه الوكالة، تأكيد توفره تايلند، باعتبارها دولة مستوردة، للمعلومات التي تقدمها دولة أخرى إلى الوكالة بشأن تصدير مثل هذه المعدات والمواد إلى تايلند.
- 10° الخطط العامة لفترة السنوات العشر التالية فيما يخص تطوير دورة الوقود النووي (بما في ذلك أنشطة البحث والتطوير المزمعة المتعلقة بدورة الوقود النووي) عندما تعتمدها السلطات الملائمة في تايلند.
 - ب- تبذل تايلند كل جهد معقول من أجل تزويد الوكالة بالمعلومات التالية:
- 1' وصف عام لأنشطة البحث والتطوير المتعلقة بدورة الوقود النووي التي لا تنطوي على مواد نووية وتتصل على وجه التحديد بالإثراء وإعادة معالجة الوقود النووي أو معالجة النفايات المتوسطة أو القوية الإشعاع التي تحتوي على بلوتونيوم أو يورانيوم شديد الإثراء أو يورانيوم-٢٣٣، المضطلع بها في أي بقعة داخل تايلند ولكن تايلند لا تتولى تمويلها أو بالتحديد ترخيصها أو مراقبتها، أو المضطلع بها نيابة عنها؛ ومعلومات تحدد مكان تلك الأنشطة. ولأغراض هذه الفقرة فإن مصطلح "معالجة" النفايات المتوسطة أو القوية الإشعاع لا يشمل عمليات إعادة تعبئة النفايات أو عمليات تكييفها غير المنطوية على فصل العناصر، من أجل خزن النفايات أو التخلص منها.
- 'Y' وصف عام للأنشطة وهوية الشخص أو الكيان الذي يضطلع بتلك الأنشطة، التي تنفذ في أماكن تحددها الوكالة خارج موقع، والتي ترى الوكالة أنها ربما كانت مرتبطة ارتباطاً وظيفياً بأنشطة ذلك الموقع. ويخضع توفير هذه المعلومات لطلب محدد من جانب الوكالة. وتقدم المعلومات بالتشاور مع الوكالة وفي توقيت سريع.
- ج- بناءً على طلب الوكالة تقدم تايلند إسهاباً أو توضيحاً لأي معلومات قدمتها بموجب هذه المادة، بقدر ما يكون ذلك ذا صلة بأغراض الضمانات.

- أ- تقدم تايلند للوكالة المعلومات المحددة في الفقرات الفرعية أ'١' وأ'٣' وأ'٤' وأ'٥' وأ'٦'(أ) وأ'٧' وأ'٠' من المادة ٢ في غضون ١٨٠ يوماً من بدء نفاذ هذا البروتوكول.
- ب- تقدم تايلند للوكالة، بحلول ١٥ أيار /مايو من كل عام، استيفاءات للمعلومات المشار إليها في الفقرة أ أعلاه عن الفترة التي تغطي السنة التقويمية السابقة. وإذا لم تكن هناك أي تغيرات قد طرأت على المعلومات السابق تقديمها، أوضحت تايلند ذلك.
- ج- تقدم تايلند للوكالة، بحلول ١٥ أيار/مايو من كل عام، المعلومات المحددة في الفقرتين الفرعيتين أ'7'(ب) و (ج) من المادة ٢ عن الفترة التي تغطي السنة التقويمية السابقة.
- د- تقدم تايلند للوكالة كل ثلاثة شهور المعلومات المحددة في الفقرة الفرعية أ'9'(أ) من المادة ٢. وتقدم هذه المعلومات في غضون ستين يوماً من تاريخ انتهاء فترة الثلاثة شهور.
- هـ تقدم تايلند للوكالة المعلومات المحددة في الفقرة الفرعية أ' A' من المادة ٢ قبل ١٨٠ يوماً من إجراء أي معالجة إضافية، كما تقدم بحلول ١٥ أيار/مايو من كل عام معلومات عن التغييرات التي تطرأ في المكان عن الفترة التي تغطى السنة التقويمية السابقة.
 - و- تتفق تايلند والوكالة على توقيت وتواتر تقديم المعلومات المحددة في الفقرة الفرعية أ'٢، من المادة ٢.
- ز- تقدم تايلند للوكالة المعلومات المذكورة في الفقرة الفرعية أ'9'(ب) من المادة ٢ في غضون ستين يوماً من الطلب المقدم من الوكالة.

المعاينة التكميلية

المادة ٤

تطبق الإجراءات التالية في إطار تنفيذ المعاينة التكميلية بموجب المادة ٥ من هذا البروتوكول:

- أ- لا تسعى الوكالة آلياً أو تلقائياً إلى التحقق من المعلومات المشار إليها في المادة ٢؛ ولكن يكون للوكالة معاينة ما يلي:
- '۱' أي مكان مشار إليه في الفقرة الفرعية أ'۱' أو الفقرة الفرعية أ'۲' من المادة ٥؛ وذلك على أساس انتقائي من أجل التأكد من عدم وجود أي مواد نووية أو أنشطة نووية غير معلنة؛
- 'Y' أي مكان مشار إليه في الفقرة ب أو الفقرة ج من المادة ٥، وذلك من أجل حسم أي تساؤل يتعلق بتعلق بصحة واكتمال المعلومات المقدمة بموجب المادة ٢ أو من أجل حسم أي تضارب يتعلق بتلك المعلومات؛

- " أي مكان مشار إليه في الفقرة الفرعية أ"" من المادة ٥، وذلك بالقدر اللازم للوكالة من أجل أن تؤكد لأغراض الضمانات إعلان تايلند بشأن حالة الإخراج من الخدمة لمرفق أو مكان واقع خارج المرافق كان يشيع فيه استخدام مواد نووية.
- ب- '1' باستثناء الحالة المنصوص عليها في الفقرة الفرعية '٢' أدناه تعطي الوكالة تايلند إخطاراً مسبقاً بالمعاينة قبل ٢٤ ساعة على الأقل؛
- 'Y' لمعاينة أي مكان في موقع ما اقترانا بزيارات التحقق من المعلومات التصميمية أو بالعمليات التفتيشية المحددة الغرض أو الروتينية في ذلك الموقع تكون مدة الإخطار المسبق، إذا طلبت الوكالة ذلك، ساعتين على الأقل، ولكن يجوز أن تكون أقل من ساعتين في ظروف استثنائية.
 - ج- يكون الإخطار المسبق مكتوباً، ويحدد أسباب المعاينة والأنشطة اللازم تنفيذها أثناء تلك المعاينة.
- د- في حالة وجود تساؤل أو تضارب تعطي الوكالة تايلند فرصة توضيح وتيسير حسم هذا التساؤل أو التضارب. وتعطى هذه الفرصة قبل تقديم طلب لإجراء معاينة، ما لم تر الوكالة أن تأخير إجراء المعاينة سيخل بالغرض الذي التمست من أجله. وعلى أي حال لا تستخلص الوكالة أي استنتاجات بشأن التساؤل أو التضارب لحين إعطاء تايلند هذه الفرصة.
 - هـ لا تجرى المعاينة إلا أثناء ساعات العمل العادية ما لم توافق تايلند على غير ذلك.
- و- يحق لتايلند أن يرافق ممثلو تايلند مفتشي الوكالة أثناء ما يجرونه من معاينة، شريطة ألا يؤدي ذلك إلى تأخر المفتشين عن الاضطلاع بوظائفهم أو إعاقتهم عن ذلك على نحو آخر.

توفر تايلند للوكالة معاينة ما يلي:

- أ- '۱' أي موضع في موقع ما؟
- '۲' أي مكان تحدده تايلند بموجب الفقرات الفرعية من أ٥' إلى أ٨' من المادة ٢؛
- "" أي مرفق أخرج من الخدمة، أو أي مكان واقع خارج المرافق أخرج من الخدمة كان يشيع فيه استخدام مواد نووية.
- ب- أي مكان حددته تايلند بموجب الفقرة الفرعية أ'١' أو الفقرة الفرعية أ'٤' أو الفقرة الفرعية أ'٩'(ب) أو الفقرة ب من المادة ٢، خلاف الأماكن المشار إليها في الفقرة الفرعية أ'١' أعلاه؛ شريطة أن تبذل تايلند، إذا عجزت عن أن توفر مثل هذه المعاينة، كل جهد معقول لتلبية متطلبات الوكالة بوسائل أخرى ودون تأخير.
- ج- أي مكان آخر تحدده الوكالة، خلاف الأماكن المشار إليها في الفقرتين أ و ب أعلاه، من أجل أخذ عينات بيئية من مكان بعينه؛ شريطة أن تبذل تايلند، إذا عجزت عن أن توفر مثل هذه المعاينة، كل جهد معقول لتلبية متطلبات الوكالة في أماكن مجاورة أو بوسائل أخرى ودون تأخير.

- يجوز للوكالة، عند تنفيذ المادة ٥، أن تضطلع بالأنشطة التالية:
- أ- بالنسبة للمعاينة وفقاً للفقرة الفرعية أ'١' أو أ"" من المادة ٥: إجراء مراقبة بصرية، وجمع عينات بيئية؛ واستخدام أجهزة الكشف عن الإشعاعات وقياسها؛ وتركيب أختام وغيرها مما تنص عليه الترتيبات الفرعية من أجهزة بيان وكشف حالات التلاعب؛ وتنفيذ تدابير موضوعية أخرى برهنت التجربة على جدواها من الناحية التقنية ووافق مجلس المحافظين (الذي سيدعى فيما يلي "المجلس") على استخدامها وأعقبت مشاورات بين الوكالة وتايلند.
- بالنسبة للمعاينة وفقاً للفقرة الفرعية أن نمن المادة ٥: إجراء مراقبة بصرية، وعد مفردات المواد النووية؛ وإجراء قياسات غير متلف وأخذ عينات على نحو غير متلف؛ واستخدام أجهزة الكشف عن الإشعاعات وقياسها؛ وفحص السجلات ذات الصلة بكميات المواد ومنشئها وترتيبها؛ وجمع عينات بيئية؛ وتنفيذ تدابير موضوعية أخرى برهنت التجربة على جدواها من الناحية التقنية ووافق المجلس على استخدامها وأعقبت مشاورات بين الوكالة وتايلند.
- ج- بالنسبة للمعاينة وفقاً للفقرة ب من المادة ٥: إجراء مراقبة بصرية؛ وجمع عينات بيئية؛ واستخدام أجهزة الكشف عن الإشعاعات وقياسها؛ وفحص سجلات الإنتاج والشحن المتصلة بالضمانات؛ وتنفيذ تدابير موضوعية أخرى برهنت التجربة على جدواها من الناحية التقنية ووافق المجلس على استخدامها وأعقبت مشاورات بين الوكالة وتايلند.
- بالنسبة للمعاينة وفقاً للفقرة ج من المادة ٥: جمع عينات بيئية؛ وفي حالة عجز النتائج عن حسم التساؤل أو التضارب في المكان الذي حددته الوكالة بموجب الفقرة ج من المادة ٥ فإنه يجوز للوكالة أن تستخدم في هذا المكان أجهزة المراقبة البصرية وأجهزة الكشف عن الإشعاعات وقياسها، وأن تنفذ حسب المتفق عليه بين تايلند والوكالة تدابير موضوعية أخرى.

المادة ٧

- أ- بناءً على طلب تايلند، تتخذ الوكالة وتايلند ترتيبات تكفل إجراء معاينة محكومة بموجب هذا البروتوكول من أجل الحيلولة دون إفشاء معلومات حساسة تتعلق بالانتشار، أو من أجل الوفاء بمتطلبات تتعلق بالأمان أو الحماية المادية، أو من أجل حماية المعلومات المشمولة بالملكية الفكرية أو الحساسة من الناحية التجارية. وهذه الترتيبات لا تمنع الوكالة من تنفيذ الأنشطة اللازمة لتوفير تأكيدات موثوقة بشأن خلو المكان المعني من أي مواد نووية وأنشطة نووية غير معلنة، بما في ذلك حسم أي تساؤل يتعلق بصحة واكتمال المعلومات المشار إليها في المادة ٢، أو أي تضارب يتعلق بتلك المعلومات.
- ب- يجوز لتايلند، عند تقديمها المعلومات المشار إليها في المادة ٢، إبلاغ الوكالة بالمواضع القائمة في الموقع أو المكان الذي قد تنطبق فيه المعاينة المحكومة.
- ج- يجوز لتايلند لحين بدء نفاذ أي ترتيبات فرعية لازمة أن تلجأ إلى المعاينة المحكومة اتساقاً مع أحكام الفقرة أ أعلاه.

ليس في هذا البروتوكول ما يمنع تايلند من أن تعرض على الوكالة إجراء معاينة لأماكن أخرى بالإضافة إلى الأماكن المشار إليها في المادتين ○ و ٩، أو من أن تطلب من الوكالة الاضطلاع بأنشطة تحقق في مكان معين. وتبذل الوكالة كل جهد معقول للاستجابة - دون تأخير - لمثل هذا الطلب.

المادة ٩

توفر تايلند للوكالة معاينة الأماكن التي تحددها الوكالة من أجل أخذ عينات بيئية من مناطق شاسعة؛ شريطة أن تبذل تايلند - إذا عجزت عن أن توفر مثل هذه المعاينة - كل جهد معقول لتلبية متطلبات الوكالة في أماكن بديلة. ولا تلتمس الوكالة مثل هذه المعاينة إلا بعد ما يكون المجلس قد وافق على استخدام أخذ العينات البيئية من مناطق شاسعة وعلى الترتيبات الإجرائية المتعلقة بذلك، وبعد مشاورات بين الوكالة وتايلند.

المادة ١٠

تقوم الوكالة بإبلاغ تايلند بما يلي:

- أ- الأنشطة المنفذة بموجب هذا البروتوكول، بما في ذلك الأنشطة المتعلقة بأي أوجه تساؤل أو تضارب استرعت الوكالة انتباه تايلند إليها، وذلك في غضون ستين يوماً من تاريخ تنفيذ الوكالة لتلك الأنشطة.
- ب- نتائج الأنشطة المتعلقة بأي أوجه تساؤل أو تضارب استرعت الوكالة انتباه تايلند إليها، وذلك في أقرب وقت ممكن لكن على أي حال في غضون ثلاثين يوماً من تاريخ تتثبّت الوكالة من النتائج.
- ج- الاستنتاجات التي استخلصتها من أنشطتها المنفذة في إطار هذا البروتوكول. وتقدم هذه الاستنتاجات سنوياً.

تسمية مفتشى الوكالـــة

المادة ١١

- أ- "١' يتولى المدير العام إخطار تايلند بموافقة المجلس على الاستعانة بأي موظف من موظفي الوكالة للعمل مفتشاً للضمانات. وما لم تقم تايلند في غضون ثلاثة شهور من استلامها الإخطار المتعلق بموافقة المجلس بإعلام المدير العام برفضها أن يكون هذا الموظف مفتشاً في تايلند، فإن المفتش الذي تم إخطار تايلند بشأنه على هذا النحو، يعتبر مسمى للتفتيش في تايلند.
- '۲' يبادر المدير العام فوراً، استجابة منه لطلب تقدمه تايلند أو بمبادرة منه، بإبلاغ تايلند بسحب تسمية أي موظف مفتشاً في تايلند.

ب- يفترض بعد سبعة أيام من تاريخ إرسال الوكالة للإخطار المشار إليه في الفقرة أ أعلاه بالبريد المسجل إلى تايلند أن تايلند قد تسلمت الإخطار.

التأشيرات

المادة ١٢

تمنح تايلند في غضون شهر واحد من تاريخ تلقي طلب الحصول على تأشيرة، المفتش المسمى المحدد في الطلب ما هو مناسب من تأشيرات متعددة مرات الدخول/الخروج و/أو العبور - عند الاقتضاء - لتمكين المفتش من دخول أراضي تايلند والبقاء فيها لغرض الاضطلاع بمهامه. وتكون أي تأشيرات يتم طلبها صالحة لمدة سنة على الأقل ويتم تجديدها، حسب الاقتضاء، لتغطى مدة تسمية المفتش في تايلند.

الترتيبات الفرعية

المادة ١٣

- أ- حيثما تشير تايلند أو الوكالة إلى ضرورة أن تحدّد في ترتيبات فرعية كيفية تطبيق التدابير المنصوص عليها في هذا البروتوكول، تتفق تايلند والوكالة على هذه الترتيبات الفرعية في غضون تسعين يوماً من تاريخ بدء نفاذ هذا البروتوكول؛ أو في غضون تسعين يوماً من تاريخ الإشارة إلى ضرورة هذه الترتيبات الفرعية إذا صدرت تلك الإشارة بعد تاريخ بدء نفاذ هذا البروتوكول.
- ب- يحق للوكالة لحين بدء نفاذ أي ترتيبات فرعية لازمة أن تطبق التدابير المنصوص عليها في هذا البروتوكول.

نظم الاتصالات

المادة ١٤

أ- تسمح تايلند للوكالة بإقامة اتصالات حرة للأغراض الرسمية وتكفل حماية هذه الاتصالات بين مفتشي الوكالة في تايلند ومقر الوكالة الرئيسي و/أو مكاتبها الإقليمية، بما في ذلك إرسال المعلومات التي تولدها أجهزة الاحتواء و/أو المراقبة أو أجهزة القياس - التابعة للوكالة - إرسالاً غير آلي وآلياً. ويحق للوكالة أن تنتفع - بالتشاور مع تايلند - من نظم الاتصالات المباشرة المقامة على الصعيد الدولي، بما فيها نظم الأقمار الاصطناعية وغيرها من أشكال الاتصال عن بعد، غير المستخدمة في تايلند وبناءً على طلب تايلند أو الوكالة تحدد في الترتيبات الفرعية تفاصيل تنفيذ هذه الفقرة فيما يخص إرسال المعلومات التي تولدها أجهزة الاحتواء و/أو المراقبة وأجهزة القياس - التابعة للوكالة - إرسالاً غير آلي و آلياً.

ب- تراعى حق المراعاة، عند توصيل وإرسال المعلومات على النحو المنصوص عليه في الفقرة أ أعلاه، الحاجة إلى حماية المعلومات المشمولة بالملكية الفكرية أو الحساسة من الناحية التجارية أو المعلومات التصميمية التي تعتبرها تايلند ذات حساسية خاصة.

حماية المعلومات السريسة

المادة ١٥

- أ- تطبق الوكالة نظاماً صارماً يكفل الحماية الفعالة ضد إفشاء الأسرار التجارية والتكنولوجية والصناعية وغير ذلك من المعلومات السرية التي تتنامى إلى علمها، بما في ذلك ما يتنامى إلى علمها من مثل هذه المعلومات أثناء تنفيذ هذا البروتوكول.
 - ب- يتضمن النظام المشار إليه في الفقرة أ أعلاه فيما يتضمن أحكاماً تتعلق بما يلي:
 - '١' المبادئ العامة والتدابير المرتبطة بها للتعامل مع المعلومات السرية؛
 - '٢' شروط استخدام الموظفين فيما يتعلق بحماية المعلومات السرية؛
 - "" الإجراءات التي تتخذ في حالات انتهاك السرية أو ادعاءات انتهاكها.
 - ج- يوافق المجلس على النظام المشار إليه في الفقرة أ أعلاه ويستعرضه بصفة دورية.

المرفقان

المادة ١٦

- أ- يشكل مرفقا هذا البروتوكول جزءاً لا يتجزأ منه. وفيما عدا أغراض تعديل المرفقين، فإن كلمة "بروتوكول" على النحو المستخدمة به في هذا الصك تعنى البروتوكول والمرفقين معاً.
- ب- يجوز للمجلس بناءً على مشورة يسديها فريق خبراء عامل مفتوح العضوية ينشئه المجلس تعديل قائمة الأنشطة المحددة في المرفق الثاني. ويسري أي تعديل من هذا القبيل بعد أربعة شهور من اعتماد المجلس له.

بدء النفاذ

المادة ١٧

أ- يبدأ نفاذ هذا البروتوكول في التاريخ الذي تتلقى فيه الوكالة إخطاراً مكتوباً من تايلند يفيد بأنَّ تايلند قد استوفت المتطلبات القانونية و/أو الدستورية اللازمة لبدء النفاذ.

- ب- يجوز لتايلند، في أي تاريخ يسبق بدء نفاذ هذا البروتوكول، أن تعلن أنها ستطبق هذا البروتوكول تطبيقاً
 مؤقتاً.
- ج- يبادر المدير العام فوراً بإبلاغ جميع الدول الأعضاء في الوكالة بأي إعلان يتعلق بتطبيق هذا البروتوكول. البروتوكول.

التعارييف

المادة ١٨

لغرض هذا البروتوكول:

- أ- أنشطة البحث والتطوير المتعلقة بدورة الوقود النووي تعني الأنشطة التي ترتبط على وجه التحديد بأي جانب تطويري لعمليات أو نظم يتعلق بأي بند من البنود التالية:
 - تحويل المواد النووية،
 - إثراء المواد النووية،
 - صنع الوقود النووى،
 - المفاعلات،
 - المرافق الحرجة،
 - إعادة معالجة الوقود النووى،
- معالجة النفايات المتوسطة أو القوية الإشعاع التي تحتوي على بلوتونيوم أو يورانيوم شديد الإثراء أو يورانيوم-٢٣٣ (ولا تشمل إعادة التعبئة، أو التكييف الذي لا يتم فيه فصل العناصر، لأغراض التخزين أو التخلص)،

لكنها لا تشمل الأنشطة المتعلقة بالبحوث العلمية النظرية أو الأساسية أو بالبحث والتطوير فيما يتصل بتطبيقات النظائر المشعة في الصناعة والتطبيقات الطبية والهيدرولوجية والزراعية، والآثار الصحية والبيئية وتحسين الصيانة.

الموقع يعني المنطقة التي حددتها تايلند في المعلومات التصميمية ذات الصلة من أجل احتواء مرفق، بما في ذلك المرافق المعلقة، وفي المعلومات ذات الصلة بشأن مكان واقع خارج المرافق يشيع فيه استخدام مواد نووية، بما في ذلك الأماكن المعلقة الواقعة خارج المرافق التي كان يشيع فيها استخدام مواد نووية (ويقتصر ذلك على الأماكن التي توجد بها خلايا ساخنة أو التي كان يتم فيها الاضطلاع بأنشطة تتعلق بالتحويل أو الإثراء أو صنع الوقود أو إعادة معالجته). كما يشمل جميع المنشآت المتجاورة مع المرفق أو المكان، المرتبطة بتقديم أو استعمال خدمات أساسية تشمل ما يلي: الخلايا الساخنة المستخدمة في معالجة المواد المشععة التي لا تحتوي على مواد نووية؛ ومنشآت معالجة وخزن

- النفايات والتخلص منها؛ والمباني المقترنة بأنشطة معينة حددتها تايلند. بموجب الفقرة الفرعية أن ثن المادة ٢ أعلاه
- ج- المرفق الذي تم إخراجه من الخدمة، أو المكان الواقع خارج المرافق الذي تم إخراجه من الخدمة، يعني المنشأة، أو المكان، التي تم فيها إزالة أو إبطال مفعول الهياكل المتبقية والمعدات اللازمة لاستخدامها بحيث يتعذر استعمالها في مناولة المواد النووية أو معالجتها أو استخدامها.
- د- <u>المرفق المغلق</u>، أو <u>المكان المغلق الواقع خارج المرافق</u>، يعني المنشأة، أو المكان، التي أوقفت فيها العمليات وأزيلت منها المواد النووية لكن لم يتم إخراجها من الخدمة.
- هـ اليورانيوم الشديد الإثراء يعني اليورانيوم الذي يحتوي على ٢٠ في المائـة أو أكثر من نظيـر اليورانيوم-٢٣٥.
- و- <u>أخذ عينات بيئية من مكان بعينه</u> يعني جمع عينات بيئية (مثلاً من الهواء والماء والنبات والتربة والمسحات) من مكان حددته الوكالة، ومن البقعة المجاورة له مباشرة، بغرض مساعدة الوكالة على الخروج باستنتاجات بشأن خلو هذا المكان المحدد من أي مواد نووية غير معلنة أو أنشطة نووية غير معلنة
- ز- <u>أخذ عينات بيئية من مناطق شاسعة</u> يعني جمع عينات بيئية (مثلاً من الهواء والماء والنبات والتربة والمسحات) من مجموعة أماكن حددتها الوكالة، بغرض مساعدة الوكالة على الخروج باستنتاجات بشأن خلو منطقة شاسعة من أي مواد نووية غير معلنة أو أنشطة نووية غير معلنة.
- المواد النووية تعني أي مادة مصدرية أو أي مادة انشطارية خاصة حسب التعريف الوارد في المادة العشرين من النظام الأساسي. ولا يفسر مصطلح المادة المصدرية على اعتبار أنه ينطبق على الخامات أو مخلفات الخامات. وأي قرار يتخذه المجلس بموجب المادة العشرين من النظام الأساسي للوكالة، بعد بدء نفاذ هذا البروتوكول، بحيث يضيف مادة إلى المواد التي تعتبر مادة مصدرية أو مادة انشطارية خاصـــة، لا يسري بموجب هذا البروتوكول إلا عندما تقبله تايلند.

ط- المرفق يعنى:

- '۱' مفاعلاً، أو مرفقاً حرجاً، أو مصنع تحويل، أو مصنع إنتاج، أو مصنع إعادة معالجة، أو مصنعاً لفصل النظائر، أو منشأة خزن مستقل؛
 - '۲' أو أي مكان يشيع فيه استخدام مواد نووية بكميات تزيد على كيلو جرام فعال.
- ي- المكان الواقع خارج المرافق يعني أي منشأة، أو مكان، لا تمثل مرفقاً، يشيع فيها استخدام مواد نووية بكميات تبلغ كيلوجراماً فعالاً أو أقل.

حُرِّر في فيينا في اليوم الثاني والعشرين من شهر أيلول/سبتمبر ٢٠٠٥ من نسختين باللغة الإنكليزية.

عن الوكالة الدولية للطاقة الذرية:

عن مملكة تايلند

محمد البرادعي المدير العام أديساك بانوبونغ السفير الممثل الدائم لتايلند لدى الوكالة

المرفق الأول

قائمة الأنشطة المشار إليها في الفقرة الفرعية أنه أنه من المادة ٢ من البروتوكول

1' تصنيع أنابيب الجزء الدُّوار من الطاردات المركزية أو تجميع الطاردات المركزية الغازية.

أنابيب الجزء الدَّوار من الطاردات المركزية تعني الاسطوانات الرقيقة الجدران الوارد وصفها في الفقرة الفرعية ٥-١-١(ب) من المرفق الثاني.

<u>الطاردات المركزية الغازية</u> تعني الطاردات الوارد وصفها في الملحوظة الإيضاحية السابقة للفقرة الفرعية ٥-١ من المرفق الثاني.

'۲' تصنيع الحواجز الانتشارية.

الحواجز الانتشارية تعني المرشحات المسامية الرقيقة الوارد وصفها في الفقرة الفرعية ٥-٣-١(أ) من المرفق الثاني.

"" تصنيع أو تجميع النظم المعتمدة على الليزر.

النظم المعتمدة على الليزر تعني النظم التي تشتمل على المفردات الوارد وصفها في الفقرة الفرعية -٧ من المرفق الثاني.

٤٠ تصنيع أو تجميع أجهزة فصل النظائر الكهرمغنطيسية.

أجهزة فصل النظائر الكهرمغنطيسية تعني المفردات المشار إليها في الفقرة الفرعية ٥-٩-١ من المرفق الثاني والتي تحتوي على مصادر أيونية والتي ورد وصفها في الفقرة الفرعية ٥-٩-١(أ) من المرفق الثاني.

'٥' تصنيع أو تجميع الأعمدة أو معدات الاستخراج.

الأعمدة أو معدات الاستخراج تعني المفردات الوارد وصفها في الفقرات الفرعية ٥-٦-١ و٥-٦-٢ و٥-٦-٢ و٥-٦-٢ و٥-٦-٢

'7' تصنيع فو هات الفصل النفاثة أو أنابيب الفصل الدوامي.

<u>فوهات الفصل النفاثة</u> أو أنابيب الفصل الدوامي تعني فوهات الفصل وأنابيب الفصل الدوامي الوارد وصفها في الفقرتين الفرعيتين ٥-٥-١ و٥-٥-٢ من المرفق الثاني على التوالي.

٧٠ تصنيع أو تجميع نظم توليد بلازما اليورانيوم.

نظم توليد بلازما اليورانيوم تعني النظم القادرة على توليد بلازما اليورانيوم والتي ورد وصفها في الفقرة الفرعية ٥-٨-٣ من المرفق الثاني.

'٨' تصنيع أنابيب الزركونيوم.

أنابيب الزركونيوم تعنى الأنابيب الوارد وصفها في الفقرة الفرعية ١-٦ من المرفق الثاني.

'9' تصنيع أو تحسين الماء الثقيل أو الديوتريوم.

الماء الثقيل أو الديوتريوم يعني الديوتريوم والماء الثقيل (أكسيد الديوتريوم) وأي مركب ديوتريومي آخر تتجاوز فيه نسبة ذرات الديوتريوم إلى ذرات الهيدروجين ١ إلى ٥٠٠٠.

'١٠' تصنيع الجرافيت النووي الرتبة.

الجرافيت النووي الرتبة يعني الجرافيت الذي يكون مستوى نقائه أفضل من ٥ أجزاء في المليون من مكافئ البورون والذي تكون كثافته أكبر من ١،٥٠ جم/سم .

'١١' تصنيع قوارير الوقود المشعع.

قارورة الوقود المشعع تعني وعاءً يستخدم في نقل و/أو خزن الوقود المشعع ويكفل له الوقاية الكيميائية والحرارية والإشعاعية ويبدد حرارة الاضمحلال أثناء عمليات المناولة والنقل والخزن.

'۱۲' تصنيع قضبان التحكم في المفاعلات.

قضبان التحكم في المفاعلات تعني القضبان الوارد وصفها في الفقرة الفرعية ١-٤ من المرفق الثاني.

'١٣' تصنيع الصهاريج والأوعية المأمونة ضد مخاطر الحرجية.

الصهاريج والأوعية المأمونة ضد مخاطر الحرجية تعني المفردات الوارد وصفها في الفقرتين الفرعيتين ٣-٢ و٣-٤ من المرفق الثاني.

'12' تصنيع آلات تقطيع عناصر الوقود المشعع.

آلات تقطيع عناصر الوقود المشعع تعني المعدات الوارد وصفها في الفقرة الفرعية ٣-١ من المرفق الثاني.

١٥' بناء الخلايا الساخنة.

الخلايا الساخنة تعني خلية أو خلايا مترابطة لا يقل حجمها الإجمالي عن 7 م7، وتكون مزودة بتدريع يعادل أو يتجاوز ما يكافئ 0.0 م من الخرسانة، وتكون كثافتها 7.7 جم/سم أو أكثر، وتكون مزودة بمعدات تصلح لعمليات التشغيل عن بعد.

المرفق الثانى

قائمة الأنواع المحددة من المعدات والمواد غير النووية، لأغراض التبليغ عن الصادرات والواردات وفقا للفقرة الفرعية أ، ٩، من المادة ٢

١- المفاعلات والمعدات اللازمة لها

١-١ المفاعلات النووية الكاملة

هي مفاعلات نووية قادرة على العمل بحيث تحافظ على تفاعل تسلسلي انشطاري محكوم ومتداوم، وذلك باستثناء مفاعلات الطاقة الصفرية التي تعرف كمفاعلات ذات معدل إنتاج تصميمي أقصى لا يتجاوز ١٠٠ جرام من البلوتونيوم سنويا.

ملحوظة إيضاحية

يتضمن "المفاعل النووي" أساساً الأصناف الموجودة داخل وعاء المفاعل أو المتصلة به اتصالاً مباشراً، والمعدات التي تتحكم في مستوى القدرة داخل القلب، والمكونات التي تحتوي عادة على المبرد الابتدائي لقلب المفاعل أو تتصل به اتصالاً مباشراً أو تتحكم فيه.

ولا يقصد استبعاد المفاعلات التي قد تكون لديها - على نحو معقول - قابلية التغير من أجل إنتاج كمية تزيد كثيراً على ١٠٠ جرام من البلوتونيوم سنوياً. ولا تندرج ضمن فئة "مفاعلات الطاقة الصفرية" المفاعلات المصممة لكي تعمل على نحو مستديم عند مستويات قدرة عالية، بغض النظر عن طاقتها الإنتاجية للبلوتونيوم.

٢-١ أو عية الضغط الخاصة بالمفاعلات

هي أوعية معدنية، تكون على شكل وحدات كاملة أو على شكل أجزاء رئيسية منتجة داخل المصنع ومصممة أو معدة خصيصا لاحتواء قلب المفاعل النووي، حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه، وتكون قادرة على تحمل الضغط التشغيلي للمبرد الابتدائي.

ملحوظة إيضاحية

يشمل البند ١-٢ الألواح العلوية لأوعية ضغط المفاعلات باعتبار تلك الألواح أجزاءً رئيسية من أوعية الضغط منتجة داخل المصنع.

ويتولى مورد المفاعل عادة توريد مكونات المفاعل الداخلية (مثل الأعمدة والألواح الارتكازية الخاصة بالقلب وغيرها من المكونات الداخلية للأوعية، وأنابيب توجيه قضبان التحكم، والدروع الحرارية، والعوارض، وألواح القلب الشبكية، وألواح الانتشار وغيرها). وفي بعض الحالات يتضمن صنع أوعية الضغط إنتاج بعض المكونات الحاملة الداخلية. وهذه الأصناف على قدر من الأهمية الحيوية بالنسبة لأمان وعولية تشغيل المفاعل (ومن ثم بالنسبة للضمانات التي يكفلها والمسؤولية التي يتحملها

مورد المفاعل)، وبالتالي ليس من الشائع توريدها خارج نطاق ترتيبات التوريد الأساسية الخاصة بالمفاعل نفسه. ولذا، على الرغم من أن التوريد المنفصل لهذه الأصناف المصممة والمعدة خصيصاً وهي فريدة وكبيرة وباهظة التكلفة، وذات أهمية حيوية - لا يعتبر بالضرورة توريداً واقعاً خارج نطاق مجال الاهتمام، فإن هذا النمط من أنماط التوريد يعتبر غير مرجح.

١-٣ آلات تحميل وتفريغ وقود المفاعلات

هي معدات المناولة المصممة أو المعدة خصيصاً لإدخال الوقود في المفاعل النووي - حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه أو لإخراجه منه، وتكون قادرة على تحميل الوقود وتفريغه أثناء تشغيل المفاعل أو تستعمل أجهزة معقدة تقنياً تكفل ترتيب أو رص الوقود بما يتيح إجراء عمليات التحميل المعقدة أثناء إيقاف التشغيل مثل العمليات التي لا تتاح فيها عادة مراقبة الوقود أو معاينته مباشرة.

١-٤ قضبان التحكم في المفاعلات

هي قضبان مصممة أو معدة خصيصاً للتحكم في معدل التفاعل داخل المفاعل النووي حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه.

ملحوظة إيضاحية

يتضمن هذا الصنف - علاوة على الجزء الخاص بامتصاص النيوترونات - الهياكل الارتكازية أو التعليقية اللازمة إذا تم توريدها بصورة منفصلة.

١-٥ أنابيب الضغط الخاصة بالمفاعلات

هي أنابيب مصممة أو معدة خصيصاً لاحتواء عناصر الوقود والمبرد الابتدائي للمفاعل، حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه، عند ضغط تشغيل يتجاوز ١ر٥ ميجاباسكال (٧٤٠ رطلاً/بوصة مربعة).

١-٦ أنابيب الزركونيوم

هي أنابيب أو مجموعات أنابيب مصنوعة من فلز الزركونيوم وسبائكه بكميات تتجاوز ٠٠٠ كيلوجرام خلال أي فترة ممتدة إلى ١٢ شهراً، وهي مصممة أو معدة خصيصاً للاستخدام داخل المفاعل - حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه - وتكون فيها نسبة الهافنيوم إلى الزركونيوم أقل من ١ إلى ٠٠٠ جزء من حيث الوزن.

١-٧ مضخات المبرد الابتدائي

هي مضخات مصممة أو معدة خصيصاً لتمرير المبرد الابتدائي داخل المفاعل النووي حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه.

ملحوظة إيضاحية

يمكن أن تشتمل المضخات المصممة أو المعدة خصيصاً على نظم معقدة مختومة بختم واحد أو عدة أختام لمنع تسرب المبرد الابتدائي، ومضخات محفوزة باسطوانات، ومضخات ذات نظم كتلية بقصور ذاتى. ويشمل هذا التعريف المضخات المصدقة وفقاً للمعيار I-NC أو المعايير المكافئة.

٢- المواد غير النووية اللازمة للمفاعلات

١-٢ الديوتيريوم والماء الثقيل

المقصود هو الديوتيريوم والماء الثقيل (أكسيد الديوتيريوم)، وأي مركبات أخرى للديوتيريوم، تزيد في أي منها نسبة ذرات الديوتيريوم إلى ذرات الهيدروجين على ١ إلى ٥٠٠٠؛ وذلك من أجل الاستخدام داخل المفاعل النووي، حسب تعريفه الوارد في الفقرة الفرعية ١-١ أعلاه، بكميات تزيد على ٢٠٠ كيلوجرام من ذرات الديوتيريوم يتلقاها أي بلد خلال أي فترة ممتدة إلى ١٢ شهراً.

٢-٢ الجرافيت من المرتبة النووية

هو الجرافيت الذي يكون مستوى نقائه أعلى من \circ أجزاء في المليون من المكافئ البوروني، وتكون كثافته أكبر من $1.0 \cdot$ جرام/سم ، وذلك من أجل الاستخدام داخل المفاعل النووي حسب تعريفه الوارد في الفقرة الفرعية 1-1 أعلاه، بكميات تتجاوز 1×1^2 كيلوجرام (1×1^2 طناً مترياً)، يتلقاها أي بلد، خلال أي فترة ممتدة إلى 1×1^2 شهراً.

ملحوظة

لأغراض التبليغ، تحدد الحكومة ما إذا كانت صادرات الجرافيت المستوفية للمواصفات المبينة أعلاه هي للاستخدام في مفاعلات نووية أم لا.

٢- مصانع إعادة معالجة عناصر الوقود المشعع والمعدات المصممة أو المعدة خصيصاً لها

ملحوظة تمهيدية

تؤدي إعادة معالجة الوقود النووي المشعع إلى فصل البلوتونيوم واليورانيوم عن النواتج الانشطارية الشديدة الإشعاع وغيرها من عناصر ما بعد اليورانيوم. وهذا الفصل يمكن إجراؤه بطرق تقنية مختلفة؛ إلا أن الطريقة Purex قد أصبحت على مر السنين أكثر هذه الطرق شيوعاً في الاستخدام وأوفرها حظاً من حيث القبول. وتنطوي هذه الطريقة على إذابة الوقود النووي المشعع في حمض النتريك ثم فصل اليورانيوم والبلوتونيوم والنواتج الانشطارية عن طريق الاستخلاص بالمذيبات وذلك باستعمال مزيج من فوسفات ثلاثي البوتيل المخلوط بمخفف عضوي.

وتتشابه المرافق التي تستخدم الطريقة Purex فيما تؤديه من مهام تتضمن ما يلي: تقطيع عناصر الوقود المشعع، والاستخلاص بالمذيبات، وخزن المحلول الناتج عن المعالجة. ويمكن أن تكون هناك أيضاً معدات لنزع النترات من نترات اليورانيوم، حرارياً، وتحويل نترات البلوتونيوم إلى أكاسيد أو فلزات، ومعالجة محاليل نفايات النواتج الانشطارية لتحويلها إلى شكل يصلح للخزن الطويل الأجل أو النهائي. إلا أن الأنواع المحددة للمعدات التي تؤدي تلك المهام، وأشكالها الهندسية، قد تتفاوت فيما بين المرافق التي تستخدم الطريقة Purex، وذلك لعدة أسباب منها نوع وكمية الوقود النووي المشعع الملازم إعادة معالجته، وأوجه الاستعمال المزمعة للمواد المستخلصة، ومبادئ الأمان والصيانة المتوخاة عند تصميم تلك المرافق.

وتشمل عبارة "مصنع لإعادة معالجة عناصر الوقود المشعع" المعدات والمكونات التي تتصل عادة اتصالاً مباشراً بالوقود المشعع وتستخدم في التحكم المباشر فيه، وكذلك أهم ما يحدث أثناء المعالجة من تدفقات للمواد النووية والنواتج الانشطارية.

وهذه العمليات، بما فيها النظم الكاملة لتحويل البلوتونيوم وإنتاج فلز البلوتونيوم، يمكن تحديدها عن طريق التدابير التي تتخذ لتجنب الحرجية (بفضل الشكل الهندسي مثلاً) والتعرض للإشعاعات (بفضل التدريع مثلاً) ومخاطر التسمم (بفضل الاحتواء مثلاً).

ويرد فيما يلي سرد لأصناف المعدات التي تعتبر مندرجة ضمن المعنى المقصود بعبارة "المعدات المصممة أو المعدة خصيصاً" لإعادة معالجة عناصر الوقود المشعع:

١-٣ آلات تقطيع عناصر الوقود المشعع

ملحوظة تمهيدية

تقوم هذه المعدات بشق كسوة الوقود من أجل تعريض المادة النووية المشععة للذوبان. والأشيع جداً استعمال معدات متقدمة مثل أجهزة الليزر.

هي معدات يتم تشغيلها عن بعد، وتكون مصممة أو معدة خصيصاً كيما تستخدم في مصانع إعادة المعالجة بمعناها المحدد أعلاه، ويكون الغرض منها تقطيع أو فرم أو جز مجمعات الوقود النووي المشعع أو حزم هذا الوقود أو قضبانه.

٣-٢ أوعية الإذابة

ملحوظة تمهيدية

نتلقى أو عية الإذابة، عادة، أجزاء الوقود المستهلك المقطعة. وفي هذه الأوعية المأمونة ضد مخاطر الحرجية تذاب المواد النووية المشععة في حمض النتريك فلا تبقى منها إلا الأغلفة التي تسحب من خطوط العمليات.

هي صهاريج مأمونة ضد مخاطر الحرجية (كأن تكون صهاريج ذات أقطار صغيرة أو صهاريج حلقية أو مسطحة)، ومصممة أو معدة خصيصاً كيما تستخدم في مصانع إعادة المعالجة بمعناها المحدد أعلاه؛ وغرضها إذابة الوقود النووي المشعع؛ وهي قادرة على مقاومة السوائل الساخنة الأكتالة جداً ويمكن تحميلها وصيانتها عن بعد.

٣-٣ أجهزة ومعدات الاستخلاص بالإذابة

ملحوظة تمهيدية

نتلقى أجهزة الاستخلاص بالإذابة كلاً من محلول الوقود المشعع الوارد من أوعية الإذابة والمحلول العضوي الذي يفصل اليورانيوم والبلوتونيوم والنواتج الانشطارية. وعادة ما تصمم معدات الاستخلاص بالإذابة بحيث تفي ببار امترات تشغيلية صارمة مثل امتداد عمر ها التشغيلي دون حاجتها إلى متطلبات صيانة معينة، أو سهولة إحلالها؛ وبساطة تشغيلها والتحكم فيها؛ ومرونتها إزاء تغيرات ظروف المعالجة.

هي أجهزة استخلاص بالإذابة مصممة أو معدة خصيصاً - مثل الأعمدة المبطنة أو النبضية، أو خلاطات التصفية أو الطاردات المركزية التلامسية - كيما تستخدم في مصانع إعادة معالجة الوقود المشعع. ويجب أن تكون أجهزة الاستخلاص بالإذابة عالية المقاومة للتأثير الأكتال لحمض النتريك. وهي تصنع عادة - بناءً على مواصفات بالغة الصرامة (بما في ذلك تقنيات اللحام الخاصة، وتقنيات الفحص وتوكيد الجودة ومراقبة الجودة) - من الصلب غير القابل للصدأ المحتوي على نسبة منخفضة من الكربون، أو من التيتانيوم أو الزركونيوم أو غير ذلك من المواد العالية الجودة.

٣-٤ أوعية تجميع أو خزن المحاليل الكيميائية

ملحوظة تمهيدية

تفضي مرحلة الاستخلاص بالإذابة إلى تدفق ثلاثة سوائل رئيسية ناتجة عن المعالجة. وللمضي في معالجة تلك السوائل الثلاثة تستخدم أوعية التجميع أو الخزن على النحو التالى:

- (أ) يركز بالتبخير محلول نترات اليورانيوم النقي ويخضع لعملية نزع ما به من نترات فيتحول إلى أكسيد يورانيوم. ويعاد استخدام هذا الأكسيد في دورة الوقود النووي.
- (ب) يركز بالتبخير، عادة، محلول النواتج الانشطارية الشديدة الإشعاع، ويخزن كمركز سائل. ويمكن بعد ذلك تبخير هذا المركز وتحويله إلى شكل مناسب للخزن أو التخلص النهائي.
- (ج) يركز محلول نترات البلوتونيوم النقي ويخزن لحين انتقاله إلى مراحل المعالجة اللاحقة. وبصفة خاصة تصمم أوعية تجميع أو خزن محاليل البلوتونيوم بحيث يتم تجنب مشاكل الحرجية الناجمة عن حدوث تغيرات في درجة تركيز وشكل السائل المتدفق.

هي أوعية تجميع أو خزن مصممة أو معدة خصيصاً كيما تستخدم في مصانع إعادة معالجة الوقود المشعع. ويجب أن تكون هذه الأوعية عالية المقاومة للتأثير الأكّال لحمض النتريك. وهي تصنع عادة

من مواد معينة مثل الصلب غير القابل للصدأ، المحتوي على نسبة منخفضة من الكربون، أو من التيتانيوم أو الزركونيوم أو غير ذلك من المواد العالية الجودة، ويتم تصميمها بحيث يمكن تشغيلها وصيانتها عن بعد، ويمكن أن تتسم بالخصائص التالية للتحكم في الحرجية النووية:

- (١) جدران أو إنشاءات داخلية ذات مكافئ بوروني لايقل عن ٢%،
- (٢) أو قطر لا يتجاوز ١٧٥ مم (٧ بوصات) بالنسبة للأوعية الاسطوانية،
- (٣) أو عرض لا يتجاوز ٧٥ مم (٣ بوصات) بالنسبة للأوعية المسطحة أو الحلقية.

٣-٥ نظم تحويل نترات البلوتونيوم إلى أكسيد البلوتونيوم

ملحوظة تمهيدية

في معظم مرافق إعادة المعالجة تنطوي هذه العملية النهائية على تحويل محلول نترات البلوتونيوم إلى ثاني أكسيد البلوتونيوم. وأهم المهام الداخلة في هذه العملية هي: خزن وضبط لقيم العملية، والترسيب وفصل السوائل عن الأجسام الصلبة، والتكليس، ومناولة النواتج، والتهوية، وتصريف النفايات، ومراقبة العمليات.

هي نظم كاملة مصممة أو معدة خصيصاً لتحويل نترات البلوتونيوم إلى أكسيد البلوتونيوم، وهي مطوعة بصفة خاصة لتجنب آثار الحرجية والإشعاعات ولتقليل مخاطر التسمم بقدر الإمكان.

٢-٢ نظم إنتاج فلز البلوتونيوم من أكسيد البلوتونيوم

ملحوظة تمهيدية

تنطوي هذه العملية، التي يمكن أن ترتبط بمرافق إعادة المعالجة، على فلورة ثاني أكسيد البلوتونيوم - عادة بواسط فلوريد البلوتونيوم الذي يختزل بعد ذلك باستخدام فلز كالسيوم شديد النقاء من أجل إنتاج بلوتونيوم فلزي وخبث فلوريد الكالسيوم. وأهم المهام الداخلة في هذه العملية هي: الفلورة (باستخدام معدات مصنوعة من فلز نفيس أو مبطنة بفلز نفيس على سبيل المثال)، واختزال الفلز (باستخدام بواتق خزفية مثلاً) واستخلاص الخبث، ومناولة النواتج، والتهوية، وتصريف النفايات، ومراقبة العمليات.

هي نظم كاملة مصممة أو معدة خصيصاً من أجل إنتاج فلز البلوتونيوم، وهي مطوعة بصفة خاصة لتجنب آثار الحرجية والإشعاعات ولتقليل مخاطر التسمم بقدر الإمكان.

٤- مصانع إنتاج عناصر الوقود

تشمل عبارة "مصانع إنتاج عناصر الوقود" المعدات:

(أ) التي عادة ما تتصل اتصالاً مباشراً بتدفق إنتاج المواد النووية أو التي تعالج هذا التدفق معالجة مباشرة أو تكفل تنظيمه،

(ب) أو التي تختم المواد النووية داخل الكسوة.

٥- مصانع فصل نظائر اليورانيوم والمعدات المصممة أو المعدة خصيصاً لها، بخلاف الأجهزة التحليلية

يرد فيما يلي سرد الأصناف المعدات التي تعتبر مندرجة ضمن المعنى المقصود بعبارة "المعدات المصممة أو المعدة خصيصاً، بخلاف الأجهزة التحليلية" لفصل نظائر اليورانيوم:

٥-١ الطاردات المركزية الغازية، والمجمعات والمكونات المصممة أو المعدة خصيصاً للاستخدام في الطاردات المركزية الغازية

ملحوظة تمهيدية

نتألف الطاردة المركزية الغازية عادة من اسطوانة واحدة أو أكثر رقيقة الجدران يتراوح قطرها بيات المسلم (٣ بوصات) و ٠٠٠ مم (١ بوصة) موجودة داخل حيز مفرغ الهواء وتدور بسرعة محيطية عالية تبلغ نحو ٢٠٠ م/ث أو أكثر مع بقاء محورها المركزي في الوضع الرأسي. ولبلوغ سرعة عالية يجب أن تكون نسبة المقاومة إلى الكثافة عالية في المواد الإنشائية للمكونات الدوارة، ويجب أن تكون مجمعة الجزء الدوار - ومن ثم مكوناتها المفردة - مصنوعة بدقة شديدة جداً مسن أجسل تقليل الاختلال بقدر الإمكان. وبخلاف بعض الطاردات المركزية الأخرى تتميز الطاردة المركزية الغازية المستخدمة في إثراء اليورانيوم بوجود عارضة دوارة - واحدة أو أكثر - قرصية الشكل داخل غرفة الجزء الدوار؛ ووجود مجموعة أنابيب ثابتة تستخدم في إدخال واستخراج غاز سادس فلوريد اليورانيوم وتتألف من ثلاث قنوات منفصلة على الأقل، منها قناتان متصلتان بتجاويف تمتد من محور الجزء الدوار حتى محيط غرفة المحور الدوار. كما توجد داخل الحيز المفرغ بتجاويف تمتد من مواد فريدة من نوعها. إلا أن أي مرفق طاردات مركزية يحتاج إلى عدد ضخم من يحتاج تصنيعها إلى مواد فريدة من نوعها. إلا أن أي مرفق طاردات مركزية يحتاج إلى عدد ضخم من هذه المكونات، بحيث يمكن أن توفر كمياتها مؤشراً هاماً يدل على غرض الاستخدام النهائي.

٥-١-١ المكونات الدوارة

(أ) مجمعات الجزء الدوار الكاملة:

هي اسطوانات رقيقة الجدران، أو عدة اسطوانات مترابطة رقيقة الجدران، مصنوعة من مادة واحدة أو عدد من المواد التي تتميز بارتفاع نسبة مقاومتها إلى كثافتها والتي يرد وصفها في الملحوظة الإيضاحية الخاصة بهذا الجزء؛ وإذا كانت الاسطوانات مترابطة فإنها توصل فيما بينها عن طريق المنافخ أو الحاقات المرنة التي يرد وصفها في الجزء الفرعي التالي ٥-١-١(ج). ويجهز الجزء الدوار بعارضة داخلية واحدة أو أكثر وبسدادات طرفية حسب الوصف الوارد في الجزءين الفرعيين التاليين ٥-١-١(د) و(ه)، وذلك إذا كان هذا الجزء معداً في صورته النهائية. ومع ذلك لا يمكن توريد المجمعة الكاملة إلا على شكل أجزاء مركبة كل على حدة.

(ب) أنابيب الجزء الدوار:

هي اسطوانات رقيقة الجدران، مصممة أو معدة خصيصاً، بسمك لا يتجاوز ١٢ مم (٥٠٠ بوصة) وبقطر يتراوح بين ٧٥ مم (٣ بوصات) و ٤٠٠ مم (١٦ بوصة)؛ وتصنع من إحدى المواد التي تتميز بارتفاع نسبة صلابتها إلى كثافتها والتي يرد وصفها في الملحوظة الإيضاحية الخاصة بهذا الجزء.

(ج) الحلقات أو المنافخ:

هي مكونات مصممة أو معدة خصيصاً لتوفير ساندة موضعية لأنبوب الجزء الدوار أو لوصل عدد من أنابيب الجزء الدوار فيما بينها. والمنفاخ عبارة عن اسطوانة قصيرة لايتجاوز سمك جدارها ٣ مم (١٦٠ بوصة)، ويتراوح قطرها بين ٧٥ مـم (٣ بوصات) و ٤٠٠ مم (١٦ بوصة)؛ وهـي مـزودة بلولب. وتصنع هذه المنافخ من إحدى المواد التي تتميز بارتفاع نسبة صلابتها إلى كثافتها والتي يرد وصفها في الملحوظة الإيضاحية الخاصة بهذا الجزء.

(د) العارضات:

هي مكونات قرصية الشكل، يتراوح قطرها بين ٧٥ مم (٣ بوصات) و ٤٠٠ مم (١٦ بوصة)، مصممة أو معدة خصيصاً لتركيبها داخل أنبوبة الجزء الدوار في الطاردة المركزية من أجل عزل غرفة الإقلاع عن غرفة الفصل الرئيسية، وفي بعض الحالات يكون الغرض منها مساعدة دورة غاز سادس فلوريد اليورانيوم داخل غرفة الفصل الرئيسية في أنبوبة الجزء الدوار. وتصنع من إحدى المواد التي تتميز بارتفاع نسبة صلابتها إلى كثافتها، والتي يرد وصفها في الملحوظة الإيضاحية الخاصة بهذا الجزء.

(هـ) السدادات العلوية/السدادات السفلية:

هي مكونات قرصية الشكل، يتراوح قطرها بين ٧٥ مم (٣ بوصات) و ٤٠٠ مم (١٦ بوصة)، مصممة أو معدة خصيصاً لكي تنطبق على نهايتي أنبوبة الجزء الدوار وبالتالي تحتوي على سادس فلوريد اليورانيوم داخل أنبوبة الجزء الدوار، ويكون الغرض منها في بعض الحالات أن تدعم أو تحفظ أو تحتوي، كجزء متكامل، عنصراً من المحمل الأعلى (السدادة العلوية) أو أن تحمل العناصر الدوارة للمحرك والمحمل الأسفل (السدادة السفلية). وتصنع من إحدى المواد التي تتميز بارتفاع نسبة صلابتها إلى كثافتها، ويرد وصفها في الملحوظة الإيضاحية الخاصة بهذا الجزء.

ملحوظة إيضاحية

المواد المستخدمة في المكونات الدوارة للطاردة المركزية هي:

- (أ) فولاذ ماراجينغ قادر على مقاومة شد نهائية لا تقل عن ٥٠٠ × ١٠ نيوتن/متر مربعة)؛
- (ب) وسبائك ألومينيوم قادرة على مقاومة شد نهائية لا تقل عن ١٠٠٠ × ١٠ وسبائك ألومينيوم قادرة على مقاومة شد نهائية لا تقل عن ١٠٠٠ × ١٠٠ رطل/بوصة مربعة)؛

(ج) ومواد خيطية مناسبة لاستخدامها في هياكل مركبة، بمعامل نوعي لا يقل عن ١٢،٣ × ١٠ متر، ومقاومة شد نهائية نوعية لا تقل عن ١٠٠ × ١٠ متر (المعامل النوعي، هو حاصل قسمة معامل يونغ (نيوتن/متر مربع) على الوزن النوعي، (نيوتن/متر مكعب) في حين أن امقاومة الشد النهائية النوعية، هي حاصل قسمة مقاومة الشد النهائية (نيوتن/متر مربع) على الوزن النوعي (نيوتن/متر مكعب).

٥-١-٢ المكونات الساكنة

(أ) محامل التعليق المغنطيسي:

هي مجمعات محملية مصممة أو معدة خصيصاً، ومكونة من مغنطيس حلقي معلق داخل وعاء يحتوي على وسيط للتخميد. ويصنع الوعاء من مادة قادرة على مقاومة سادس فلوريد اليورانيوم (أنظر الملحوظة الإيضاحية للجزء -7). وتقترن القطعة المغنطيسية بقطعة قطبية أو بمغنطيس ثان مركب على السدادة العلوية المذكورة في الجزء -1-1(a). ويجوز أن يكون المغنطيس على شكل حلقة لا تزيد نسبة قطرها الخارجي إلى قطرها الداخلي على 7.1:1. كما يجوز أن يكون المغنطيس على شكل على شكل يتميز بنفاذية أولية لا تقل عن 0.1.1 هنري/متر 0.1.1 بنظام الوحدات المترية المطلق)، أو بمغنطيسية متبقية بنسبة لا تقل عن 0.1.1 هنري/متر أو ناتج طاقة يزيد على 0.1.1 كيلوجول/متر مكعب 0.1.1 غاوس-أورستد). وبالإضافة إلى الخواص المادية العادية يشترط أن يكون انحراف المحاور المغنطيسية عن المحاور الهندسية محدوداً بحدود تسامحية صغيرة جداً (أقل من 0.1.1 مم أو المحاور المغنطيسية عن المحاور الهندسية أن تكون مادة المغنطيس متجانسة.

(ب) المحامل/المخمدات:

هي محامل مصممة أو معدة خصيصاً، مكونة من مجمعة محور/قدح مركبة على مخمد. ويكون المحور عادة عبارة عن عمود دوار فولاذي مقوى على شكل نصف كروي في إحدى نهايتيه ومزود بوسيلة لإلحاقه بالسدادة السفلية المذكورة في الجـــزء -1-1(a) في نهايته الأخرى. ولكن يجوز أن يكون العمود الدوار مزوداً بمحمل هيدرودينامي ملحق به. ويكون القدح على شكل كريّة بثلمة نصف كروية في سطحه. وهذه المكونات كثيراً ما يزود بها المخمد بصورة منفصلة.

(ج) المضخات الجزيئية:

هي اسطوانات مصممة أو معدة خصيصاً بتحزيزات لولبية داخلية مصنوعة آلياً أو مبثوقة، وبثقوب داخلية مصنوعة آلياً. وتكون أبعادها النموذجية كما يلي: القطر الداخلي يتراوح بين ٧٠ ممم (٣ بوصات) و ٤٠٠ مم (٢١ بوصة)، ولا يقل سمك الجدار عن ١٠ مم (٤٠٠ بوصة)، ولا يقل الطول عن القطر. كما يكون شكل التحزيزات المقطعي مستطيلاً، ولا يقل عمقها عن مليمترين (٨٠٠٠ بوصة).

(د) أجزاء المحرك الساكنة:

هي أجزاء ساكنة حلقية الشكل مصممة أو معدة خصيصاً لمحركات سريعة ببطائية مغنطيسية (أو ممانعة مغنطيسية) وتيار متناوب متعدد الأطوار من أجل عملية تزامنية داخل فراغ في نطاق تردد

٠٠٠ - ٢٠٠٠ هرتز وفي نطاق قدرة ٥٠ - ١٠٠٠ فولط أمبير. وتتكون الأجزاء الساكنة من لفيفات متعددة الأطوار حول قلب حديدي رقائقي منخفض الفقد مكوَّن من طبقات رقيقة لا يزيد سمكها على مليمترين (٠,٠٨ بوصة).

(هـ) الأوعية/المتلقيات الطاردية المركزية:

هي مكونات مصممة أو معدة خصيصاً لاحتواء مجمعة الأنابيب الدوارة في الطاردة المركزية الغازية. ويتكون الوعاء من اسطوانة صلبة يصل سمك جدارها إلى ٣٠ مم (١,١ بوصة)، مزودة بنهايات مضبوطة آلياً لوضع المحامل، ومزودة بشفة واحدة أو أكثر لتركيب هذه المحامل. وهذه النهايات المصنوعة آلياً توازي إحداها الأخرى وتتعامد على المحور الطولي للاسطوانة بما لا يزيد عن ٥٠٠٠ درجة. كما يجوز أن يكون هيكل الوعاء على شكل خلايا النحل بحيث يتسع لعدة أنابيب دوارة. وتصنع الأوعية من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بهذه المواد لحمايتها.

(و) المجارف:

هي أنابيب يصل قطرها الداخلي إلى ١٢ مم (٥,٠ بوصة)، مصممة أو معدة خصيصاً لاستخلاص غاز سادس فلوريد اليورانيوم من داخل الأنبوب الدوار بواسطة الحركة المحورية للأنبوب (أي أنها مزودة بفتحة مواجهة للتدفق المحيطي للغاز داخل الأنبوب الدوار، عن طريق حني نهاية الأنبوب الميال إلى نصف القطر على سبيل المثال) ولديها قابلية لتثبيتها في النظام المركزي لاستخلاص الغازات. وتصنع الأنابيب من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم، أو تطلى بطبقة من هذه المواد.

٥-٢ النظم والمعدات والمكونات الإضافية المصممة أو المعدة خصيصاً لمصانع إثراء الغاز بالطرد المركزي ملحوظة تمهيدية

النظم والمعدات والمكونات الإضافية من أجل مصانع إثراء الغاز بالطرد المركزي هي نظم المصانع المطلوبة لإدخال غاز سادس فلوريد اليورانيوم في الطاردات المركزية وتوصيل الطاردات المركزية فيما بينها لتكوين مراحل تعاقبية للتمكن من بلوغ إثراء أقوى بصورة مطردة واستخراج انواتجا وانفايات سادس فلوريد اليورانيوم من الطاردات المركزية، بالإضافة إلى المعدات المطلوبة لتشغيل الطاردات المركزية أو مراقبة المصنع.

ويتم عادة تبخير سادس فلوريد اليورانيوم من الصلب باستخدام محمّيات مسخنة، ويجري توزيعه بشكله الغازي على الطاردات المركزية عن طريق أنابيب توصيل تعاقبية. كما أن انواتج وانفايات سادس فلوريد اليورانيوم المتدفقة على هيئة تيارات غازية من الطاردات المركزية يتم تمريرها عن طريق أنابيب توصيل تعاقبية إلى مصائد باردة (تعمل عند درجة حرارة ٢٠٣ كيلفن (٧٠ درجة مئوية تحت الصفر))، حيث يجري تكثيفها قبل الاستمرار في نقلها إلى حاويات مناسبة لترحيلها أو خزنها. ونظراً لأن مصنع الإثراء يتكون من آلاف الطاردات المرتبة بطريقة تعاقبية، فإن طول الأنابيب يبلغ عدة كيلومترات تشمل آلاف اللحامات وكمية كبيرة من الأشكال التصميمية المتكررة. وتصنع المعدات والمكونات ونظم الأنابيب بمستويات عالية جداً من حيث التفريغ والنظافة.

٥-٢-١ نظم التغذية/نظم سحب النواتج والنفايات

هي نظم معالجة مصممة أو معدة خصيصا، تشتمل على ما يلي:

محمّيات (أو محطات) تغذية تستخدم في تمرير سادس فلوريد اليورانيوم إلى سلسلة الطاردات المركزية التعاقبية بضغط يصل إلى ١٠٠ كيلوباسكال أو (١٥ رطلاً/بوصة مربعة)، وبمعدل لا يقل عن ١ كيلوجرام/ساعة؛

محولات من الحالة الغازية إلى الحالة الصلبة (أو مصائد باردة) تستخدم لإزاحة سادس فلوريد اليورانيوم من السلسلة التعاقبية بضغط يصل إلى ٣ كيلوباسكال أو (٥,٠ رطل/بوصة مربعة). وتكون المحولات قابلة للتبريد إلى ٢٠٣ درجة كيلفن (٧٠ درجة مئوية)؛ الصفر)، كما تكون قابلة للتسخين إلى ٣٤٣ درجة كيلفن (٧٠ درجة مئوية)؛

محطات انواتج او انفايات ا، تستخدم لحبس سادس فلوريد اليورانيوم في حاويات.

والمصنع والمعدات والأنابيب تصنع كلها من مواد قادرة على مقاومة سادس فلوريد اليورانيوم أو تكون مبطنة بمثل هذه المواد (أنظر الملحوظة الإيضاحية الخاصة بهذا الجزء)، كما تصنع بمستويات عالية جداً من حيث التفريغ والنظافة.

٥-٢-٢ نظم أنابيب التوصيل الآلية

هي نظم أنابيب ونظم توصيل مصممة أو معدة خصيصاً لمناولة سادس فلوريد اليورانيوم داخل سلسلة الطاردات المركزية التعاقبية. وتكون شبكة الأنابيب عادة من نظام التوصيل الثلاثي، حيث تكون كل طاردة مركزية موصلة بكل من الموصلات وبالتالي تكون هناك كمية كبيرة من الأشكال المتكررة في الشبكة. وتصنع كلها من مواد قادرة على مقاومة سادس فلوريد اليورانيوم (أنظر الملحوظة الإيضاحية الخاصة بهذا الجزء)، كما تصنع بمستويات عالية جداً من حيث التفريغ والنظافة.

٥-٢-٣ المطيافات الكتلية لسادس فلوريد اليورانيوم/المصادر الأيونية

هي مطيافات كتلية مغنطيسية أو رباعية الأقطاب مصممة أو معدة خصيصاً، قادرة على أخذ عينات امباشرة امن التغذية أو النواتج أو النفايات من المجاري الغازية لسادس فلوريد اليورانيوم، وتتميز بالخواص التالية:

- ١- تحليل وحدة لكتلة ذرية تزيد على ٣٢٠؛
- ٢- مصادر أيونية مبنية من النيكروم أو المونل أو مبطنة بالنيكروم أو المونل، أو مطلية بالنيكل؛
 - ٣- مصادر تأيين بالرجم الإلكتروني؛
 - ٤- نظام مجمعي مناسب للتحليل النظيري.

٥-٢-٤ مغيرات التردد

هي مغيرات تردد (تعرف أيضاً بالمحولات أو المقومات العكسية) مصممة أو معدة خصيصاً من أجل تغذية أجزاء المحرك الساكنة المعرفة في -1-7(c)، أو أجزاء أو مكونات أو مجمعات فر عية لمثل هذه المغيرات، وتتميز بالخواص التالية:

- ١- خرج متعدد الأطوار بذبذبة ٦٠٠ ٢٠٠٠ هرتز؟
- ٢- استقرار عالي (بتحكم في الذبذبة بنسبة أفضل من ٢٠٠١%)؛
 - ٣- تشوه توافقي منخفض (أقل من ٢%)؛
 - ٤- كفاءة بنسبة أعلى من ٨٠%.

ملحوظة إيضاحية

الأصناف المذكورة أعلاه إما أنها تتصل اتصالاً مباشراً بغاز معالجة سادس فلوريد اليورانيوم أو أنها تتحكم تحكماً مباشراً في الطاردات المركزية ومرور الغاز من طاردة مركزية إلى أخرى ومن سلسلة تعاقبية إلى أخرى.

والمواد القادرة على مقاومة التآكل بسادس فلوريد اليورانيوم تشمل الصلب غير القابل للصدأ، والألومينيوم، وسبائك الألومينيوم، والنيكل أو سبائكه التي تحتوي على نسبة منه لا تقل عن ٦٠%.

٣-٠ المجمعات والمكونات المصممة أو المعدة خصيصاً للاستخدام في الإثراء بالانتشار الغازي

ملحوظة تمهيدية

المجمعة التكنولوجية الرئيسية في أسلوب الانتشار الغازي للفصل النظيري لليورانيوم هي عبارة عن حاجز مسامي خاص للانتشار الغازي، ومبادل حراري لتبريد الغاز (يتم تسخينه عن طريق عملية الضغط)، وصمامات ختامية وصمامات تحكمية وأنابيب. وبقدر ما تستخدم تكنولوجيا الانتشار الغازي سادس فلوريد اليورانيوم، فإن جميع أسطح المعدات والأنابيب والأجهزة (الملامسة للغاز) يجب أن تصنع من مواد لا تتأثر بملامسة سادس فلوريد اليورانيوم. ويتطلب مرفق الانتشار الغازي عدداً من هذه المجمعات بحيث يمكن للكميات أن توفر مؤشراً هاماً للاستعمال النهائي.

٥-٣-١ حواجز الانتشار الغازي

- (أ) مرشحات مسامية رقيقة مصممة أو معدة خصيصاً، بحيث يكون الطول المسامي مرشحات مسامية ولا يزيد قطر ١٠٠ ١٠٠ أنغستروم، ولا يزيد سمك المرشح على ٥ مم (٢،٠ بوصة)، ولا يزيد قطر الأشكال الأنبوبية على ٢٥ مم (بوصة واحدة). وتصنع من مواد معدنية أو متبلمرة أو خزفية قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم؛
- (ب) ومركبات أو مساحيق معدة خصيصاً لصنع مثل هذه المرشحات. وتشمل هذه المركبات والمساحيق النيكل أو سبائكه المحتوية على نسبة منه لا تقل عن ٦٠%، أو أكسيد الألومينيوم، أو البوليمرات الهيدروكربونية المفلورة فلورة كاملة المقاومة لسادس فلوريد اليورانيوم، التي لا

تقل نسبة نقائها عن ٩ر ٩٩ %، ويقل حجم جزيئاتها عن ١٠ ميكرونات، وتتميز بدرجة تجانس عالية من حيث حجم الجزيئات، وتكون معدة خصيصاً لصنع حواجز الانتشار الغازي.

٥-٣-٢ أوعية الانتشار

هي أو عية اسطوانية محكمة الأختام مصممة أو معدة خصيصاً، يزيد قطرها على ٣٠٠ مم (١٢ بوصة) ويزيد طولها على ٩٠٠ مم (٣٥ بوصة)، أو أو عية مستطيلة بأبعاد مماثلة، بتوصيلة مداخل وتوصيلتي مخارج يزيد قطر كل منها على ٥٠ مم (بوصتين)، وذلك لاحتواء حاجز الانتشار الغازي. وتصنع من مواد قادرة على مقاومة سادس فلوريد اليورانيوم أو تكون مبطنة بمثل هذه المواد، وتكون مصممة لتركيبها أفقياً أو رأسياً.

٥-٣-٥ الضاغطات ونفاخات الغاز

هي ضاغطات محورية أو نابذة بالطرد المركزي أو إزاحية إيجابية، أو نفاخات غاز بقدرة امتصاص لسادس فلوريد اليورانيوم لا تقل عن ١ متر مكعب/دقيقة، وبضغط تصريف يصل إلى عدة مئسات كيلوباسكسال (١٠٠ رطل/بوصة مربعة)، مصممة للتشغيل الطويل الأجل في بيئة سادس فلوريد اليورانيوم بمحرك كهربائي بقوة مناسبة أو بدونه، بالإضافة إلى مجمعات منفصلة من مثل هذه الضاغطات ونفاخات الغاز. كما أن نسبة ضغط هذه الضاغطات ونفاخات الغاز تتراوح بين ٢:١ و ١:١، وتصنع من مواد قادرة على مقاومة سادس فلوريد اليورانيوم أو تكون مبطنة بمثل هذه المهاد.

٥-٣-٤ سدادات العمود الدوار

هي سدادات مفرغة مصممة أو معدة خصيصاً، بتوصيلات تغذية وتوصيلات تصريف للسدادات، من أجل إغلاق العمود الذي يوصل الأعمدة الدوارة للضاغطات أو نفاخات الغاز بمحركات التشغيل لضمان عولية السدادات لمنع تسرب الهواء إلى داخل الغرفة الداخلية للضاغط أو نفاخة الغاز، المليئة بسادس فلوريد اليورانيوم. وتصمم مثل هذه الأختام عادة بحيث لا يتجاوز معدل تسرب الغاز إلى الداخل ١٠٠٠ سنتيمتر مكعب/دقيقة (٦٠ بوصة مكعبة/دقيقة).

٥-٣-٥ مبادلات الحرارة لتبريد سادس فلوريد اليورانيوم

هي مبادلات حرارة مصممة أو معدة خصيصاً، مصنوعة من مواد قادرة على مقاومة سادس فلوريد اليورانيوم أو مبطنة بمثل هذه المواد (باستثناء الصلب غير القابل للصدأ) أو مبطنة بالنحاس أو أي توليفة من هذه الفلزات، من أجل تغير الضغط التسربي بمعدل يقل عن باسكال (١٥٠٠٠٠ رطل/بوصة مربعة) في الساعة حيث يكون فرق الضغط ١٠٠٠ كيلوباسكال (١٥ رطلاً/بوصة مربعة).

٥-٤ النظم والمعدات والمكونات الإضافية المصممة أو المعدة خصيصاً للاستخدام في الإثراء بالانتشار الغازي

ملحوظة تمهيدية

النظم والمعدات والمكونات الإضافية لمصانع الإثراء بالانتشار الغازي هي نظم المصنع المطلوبة لإدخال سادس فلوريد اليورانيوم في مجمعة الانتشار الغازي، وتوصيل المجمعات فيما بينها لتكوين مراحل تعاقبية للتمكن من بلوغ إثراء أقوى بصورة مطردة واستخراج انواتجا وانفايات سادس فلوريد اليورانيوم من مجمعات الانتشار التعاقبية. ونظراً لخواص القصور الذاتي العالية لمجمعات الانتشار التعاقبية، فإن أي انقطاع في تشغيلها، ولا سيما وقف تشغيلها، يؤدي إلى عواقب خطيرة. ولذا فمن المهم أن تتم في أي مصنع للانتشار الغازي المحافظة بشكل صارم وبصورة دائمة على التفريغ في جميع النظم التكنولوجية والحماية الأوتوماتية من الحوادث وتنظيم تدفق الغاز بطريقة أوتوماتية دقيقة. ويؤدي هذا كله إلى الحاجة إلى تجهيز المصنع بعدد كبير من النظم الخاصة للقياس والتنظيم والمراقبة.

ويتم عادة تبخير سادس فلوريد اليورانيوم من اسطوانات موضوعة داخل محمّيات، ويجري توزيعه بشكله الغازي إلى نقطة الدخول عن طريق أنابيب توصيل تعاقبية. أما انواتج و انفايات سادس فلوريد اليورانيوم المتدفقة على هيئة تيارات غازية من نقاط الخروج فيتم تمرير ها عن طريق أنابيب توصيل تعاقبية إما إلى مصائد باردة أو إلى محطات ضغط، حيث يجري تحويل غاز سادس فلوريد اليورانيوم إلى سائل، وذلك قبل الاستمرار في نقله إلى حاويات مناسبة لنقله أو خزنه. ونظراً لأن مصنع الإثراء بالانتشار الغازي يتكون من عدد كبير من مجمعات الانتشار الغازي المرتبة في سلسلة تعاقبية فإن طول أنابيب التوصيل التعاقبية يبلغ عدة كيلومترات تشمل آلاف اللحامات وكميات كبيرة من الأشكال التصميمية المتكررة. وتصنع المعدات والمكونات ونظم الأنابيب بمستويات عالية جداً من حيث التفريغ والنظافة.

٥-٤-١ نظم التغذية/نظم سحب النواتج والمخلفات

هي نظم معالجة مصممة أو معدة خصيصاً، قادرة على العمل في ظروف ضغط لا يتجاوز ٣٠٠ كيلوباسكال (٤٥ رطلاً/بوصة مربعة)، وتشتمل على ما يلى:

محمّيات (أو نظم) تغذية، تستخدم في تمرير سادس فلوريد اليورانيوم إلى سلسلة الانتشار الغازي التعاقبية؛

ومحولات لتحويل الغاز إلى الحالة الصلبة (أو مصائد باردة) تستخدم لإزاحة سادس فلوريد اليورانيوم من السلسلة التعاقبية؛

ومحطات لتحويل الغاز إلى سائل، حيث يجري ضغط وتبريد غاز سادس فلوريد اليورانيوم من السلسلة التعاقبية للحصول على سائل سادس فلوريد اليورانيوم؛

ومحطات انواتج ا أو امخلفات النقل سادس فلوريد اليورانيوم إلى حاويات.

٥-٤-٢ نظم أنابيب التوصيل

هي نظم أنابيب ونظم توصيل مصممة أو معدة خصيصاً لمناولة سادس فلوريد اليورانيوم داخل سلسلة الانتشار الغازي التعاقبية. وعادة ما تكون شبكة الأنابيب من النظام المجمعي "الثنائي"، حيث تكون كل خلية موصلة بكل مجمع.

٥-٤-٣ النظم الفراغية

- (أ) هي متنوعات فراغية ونظم توصيل فراغية ومضخات فراغية مصممة أو معدة خصيصاً بقدرة شفط لا تقل عن ٥ أمتار مكعبة/دقيقة (١٧٥ قدماً مكعباً/دقيقة).
- (ب) ومضخات فراغية مصممة خصيصاً للعمل في أجواء تحتوي على سادس فلوريد اليورانيوم، تصنع من الألومينيوم أو النيكل أو السبائك المحتوية على النيكل بنسبة تزيد على ٦٠%، أو تكون مبطنة بأي من هذه المواد. ويجوز لهذه المضخات أن تكون دوارة أو إيجابية، وأن تكون ذات سدادات إزاحية وفلوروكربونية وموائع عمل خاصة.

٥-٤-٤ صمامات الإغلاق والتحكم الخاصة

هي صمامات إغلاق وتحكم منفاخية يدوية أو أوتوماتية مصممة أو معدة خصيصاً، مصنوعة من مواد قادرة على مقاومة سادس فلوريد اليورانيوم، يتراوح قطر الصمام من ٤٠ إلى ١٥٠٠ مم (١٠٥ إلى ٥٩ بوصة)، لتركيبها في النظم الرئيسية والإضافية لمصانع الإثراء بالانتشار الغازي.

٥-٤-٥ المطيافات الكتلية لسادس فلوريد اليورانيوم/المصادر الأيونية

هي مطيافات كتلية مغنطيسية أو رباعية الأقطاب مصممة أو معدة خصيصاً، قادرة على أخذ عينات "مباشرة" من التغذية أو النواتج أو المخلفات من المجاري الغازية لسادس فلوريد اليورانيوم، وتتميز بجميع الخواص التالية:

- ۱- تحلیل و حدة لکتلة ذریة تزید علی ۳۲۰؛
- ٢- مصادر أيونية مبنية من النيكروم أو المونل أو مبطنة بهما، أو مطلية بالنيكل؛
 - ٣- مصادر تأيين بالرجم الإلكتروني؛
 - ٤- نظام مجمعي مناسب للتحليل النظيري.

ملحوظة إيضاحية

الأصناف المذكورة أعلاه إما أنها تتصل اتصالاً مباشراً بغاز معالجة سادس فلوريد اليورانيوم أو أنها تتحكم تحكماً مباشراً في التدفق داخل السلسلة التعاقبية. وجميع الأسطح التي تلامس غاز المعالجة تصنع كلها من مواد قادرة على مقاومة سادس فلوريد اليورانيوم أو تكون مبطنة بمثل هذه المواد. ولأغراض الأجزاء المتصلة بمفردات الانتشار الغازي، تشمل المواد القادرة على مقاومة التآكل بسادس فلوريد اليورانيوم الصلب غير القابل للصدأ والألومينيوم وسبائك الألومينيوم وأكسيد الألومينيوم والنيكل أو السبائك التي تحتوي على النيكل بنسبة لا تقل عن ٦٠%، والبوليمرات الهيدروكربونية المفلورة فلورة كاملة القادرة على مقاومة سادس فلوريد اليورانيوم.

٥-٥ النظم والمعدات والمكونات المصممة أو المعدة خصيصاً لاستخدامها في مصانع الإثراء الأيرودينامي

ملحوظة تمهيدية

يتم في عمليات الإثراء الأيرودينامي ضغط مزيج من سادس فلوريد اليورانيوم الغازي والغاز الخفيف (الهيدروجين أو الهليوم)، ثم يمرر عبر عناصر فصل حيث يتم الفصل النظيري عن طريق توليد قوى طاردة مركزية عالية بواسطة شكل هندسي منحني الجدار. وقد استحدثت بنجاح عمليتان من هذا النوع وهما: عملية الفصل بالفوهة النفاثة، وعملية الفصل الدوامي بالأنابيب. وفي كلتا العمليتين تشمل المكونات الرئيسية لمرحلة الفصل أوعية اسطوانية تحتوي على عناصر الفصل الخاصة (الفوهات النفاثة أو أنابيب الفصل الدوامي)، والضواغط الغازية ومبادلات الحرارة المستخدمة في سحب الحرارة الناجمة عن الضغط. ويحتاج أي مصنع أيرودينامي لعدد من هذه المراحل، بحيث توفر الكميات مؤشراً هاماً للاستخدام النهائي. ونظراً لأن العمليات الأيرودينامية تستخدم سادس فلوريد اليورانيوم، يجب أن تصنع جميع أسطح المعدات والأنابيب والأجهزة (الملامسة للغاز) من مواد لا تتأثر بملامستها لسادس فلوريد اليورانيوم.

ملحوظة إيضاحية

الأصناف التي يرد بيانها في هذا الجزء إما أنها تتصل اتصالاً مباشراً بغاز سادس فلوريد اليورانيوم المستخدم في العملية، أو تتحكم تحكماً مباشراً في تدفقه داخل السلسلة التعاقبية. وتصنع جميع الأسطح الملامسة لغاز المعالجة بالكامل من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو تطلى بطبقة من مثل هذه المواد. ولأغراض الجزء المتعلق بمفردات الإثراء الأيرودينامي، تشمل المواد القادرة على مقاومة التآكل بسادس فلوريد اليورانيوم النحاس، والصلب غير القابل للصدأ، والألومينيوم، وسبائك الألومينيوم، والنيكل أو سبائكه التي تحتوي على نسبة لا تقل عن ٦٠% منه، والبوليمرات الهيدروكربونية المفلورة فلورة كاملة والقادرة على مقاومة سادس فلوريد اليورانيوم.

٥-٥-١ فوهات الفصل النفاثة

هي فوهات نفاثة بمجمعاتها مصممة أو معدة خصيصاً. وتتألف فوهات الفصل النفاثة من قنوات منحنية على شكل شق طولي لا يزيد نصف قطر انحنائها على ١ مم (يتراوح عادة بين ١,١ إلى ٥٠,٠٥م)، قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم ولها حافة قاطعة داخل الفوهة النفاثة تفصل الغاز المتدفق عبر الفوهة إلى جزءين.

٥-٥-٢ أنابيب الفصل الدوامي

هي أنابيب بمجمعاتها مصممة أو معدة خصيصاً للفصل الدوامي. وهي أنابيب اسطوانية الشكل أو مستدقة الطرف، مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بهذه المواد، يتراوح قطرها بين ٥٠٠ سم و٤ سم، ولا تزيد نسبة طولها إلى قطرها على ١:٢٠ ولها مدخل مماس أو أكثر. ويجوز أن تجهز الأنابيب بملحقات على شكل فوهات نفاثة في إحدى نهايتيها أو كلتيهما.

ملحوظة إيضاحية

يدخل غاز التغذية إلى أنبوب الفصل الدوامي ماساً إحدى النهايتين أو عبر دوارات دوامية، أو في عدة مواضع مماسة على طول محيط الأنبوب.

٥-٥-٣ الضاغطات ونفاخات الغاز

هي ضاغطات محورية أو نابذة بالطرد المركزي أو إزاحية إيجابية، أو نفاخات غاز، مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بهذه المواد، بقدرة امتصاص لمزيج من سادس فلوريد اليورانيوم/الغازات الحاملة له (الهيدروجين أو الهليوم) لا تقل عن مترين مكعبين في الدقيقة.

ملحوظة إيضاحية

تتراوح نسبة الضغط النموذجية بالنسبة لهذه الضاغطات ونفاخات الغاز بين ١:١,٢ و ٦:١.

٥-٥-٤ سدادات العمود الدوار

هي سدادات للعمود الدوار مصمة أو معدة خصيصاً، بتوصيلات تغذية وتوصيلات تصريف للسدادات، من أجل إغلاق العمود الذي يوصل الأعمدة الدوارة للضاغطات أو نفاخات الغاز بمحركات التشغيل، من أجل ضمان عولية السدادات لمنع تسرب غاز المعالجة إلى الخارج، أو تسرب الهواء أو غاز الإغلاق إلى داخل الغرفة الداخلية للضاغط أو نفاخة الغاز، المليئة بمزيج من سادس فلوريد اليورانيوم/الغازات الحاملة له.

٥-٥-٥ مبادلات الحرارة للتبريد الغازي

هي مبادلات حرارة مصممة أو معدة خصيصاً، مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بمثل هذا المواد.

٥-٥-٦ أوعية فصل العناصر

هي أو عية مصممة أو معدة خصيصاً لفصل العناصر، مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بمثل هذه المواد بغرض احتواء أنابيب الفصل الدوامي أو فوهات الفصل النفاثة.

ملحوظة إيضاحية

يجوز أن تكون هذه الأوعية اسطوانية الشكل يتجاوز قطرها ٣٠٠ مم ويزيد طولها على ٩٠٠ مم، أو يمكن أن تكون أو عية مستطيلة الشكل ذات أبعاد متماثلة، وقد يتم تصميمها بحيث يمكن تركيبها أفقياً أو رأسياً.

٥-٥-٧ نظم التغذية/نظم سحب النواتج والمخلفات

هي نظم أو معدات معالجة مصممة أو معدة خصيصاً لمصانع الإثراء مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بمثل هذه المواد وتشتمل على ما يلى:

- (أ) محمّيات أو مواقد أو نظم تغذية تستخدم في تمرير سادس فلوريد اليورانيوم إلى عملية الإثراء؛
- (ب) محولات لتحويل الغاز إلى الحالة الصلبة (أو مصائد باردة) تستخدم لإزاحة سادس فلوريد اليورانيوم من عملية الإثراء لنقله بعد ذلك بالتسخين؛
- (ج) محطات للتصليد أو لتحويل الغاز إلى سائل تستخدم لإزاحة سادس فلوريد اليورانيوم من عملية الإثراء عن طريق ضغطه وتحويله إلى الصورة السائلة أو الصلبة؛
 - (د) محطات انواتج اأو امخلفات النقل سادس فلوريد اليورانيوم في حاويات.

٥-٥-٨ نظم أنابيب التوصيل

هي نظم أنابيب توصيل مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بمثل هذه المواد، مصممة أو معدة خصيصاً لمناولة سادس فلوريد اليورانيوم داخل السلسلة الأيرودينامية التعاقبية. وعادة ما تكون شبكة الأنابيب هذه ذات تصميم يتميز بالتوصيل الثنائي، حيث تكون كل مرحلة أو مجموعة مراحل موصلة بكل موصل.

٥-٥-٩ النظم والمضخات الفراغية

- (أ) نظم فراغية مصممة أو معدة خصيصاً بقدرة شفط لا تقل عن ٥ أمتار مكعبة/دقيقة، تتكون من متنوعات فراغية وموصلات فراغية ومضخات فراغية، ومصممة للعمل في أجواء تحتوي على سادس فلوريد اليورانيوم،
- (ب) ومضخات فراغية مصممة أو معدة خصيصاً للعمل في أجواء تحتوي على سادس فلوريد اليورانيوم، تصنع من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو تطلى بمثل هذه المواد. ويجوز لهذه المضخات أن تستخدم سدادات فلوروكربونية وموائع عمل خاصة.

٥-٥-١٠ صمامات الإغلاق والتحكم الخاصة

هي صمامات إغلاق وتحكم منفاخية يدوية أو أوتوماتية، مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بمثل هذه المواد، يتراوح قطر الصمام من ٤٠ إلى ١٥٠٠ مم، وهي مصممة أو معدة خصيصاً لتركيبها في النظم الرئيسية والإضافية لمصانع الإثراء الأيرودينامي.

٥-٥-١١ المطيافات الكتلية لسادس فلوريد اليورانيوم/المصادر الأيونية

هي مطيافات كتلية مغنطيسية أو رباعية الأقطاب مصممة أو معدة خصيصاً، قادرة على أخذ عينات امباشرة امن التغذية أو النواتج أو المخلفات امن المجاري الغازية لسادس فلوريد اليورانيوم وتتميز بجميع الخواص التالية:

- تحلیل وحدة لکتلة تزید علی ۳۲۰؛

- ٢- مصادر أيونية مبنية من النيكروم أو المونل أو مبطنة بهاتين المادتين أو مطلية بالنيكل؛
 - ٣- مصادر تأيين بالرجم الإلكتروني؛
 - ٤- نظام مجمعي مناسب للتحليل النظيري.

٥-٥-١٢ نظم فصل سادس فلوريد اليورانيوم/الغازات الحاملة له

هي نظم معالجة مصممة أو معدة خصيصاً لفصل سادس فلوريد اليورانيوم عن الغازات الحاملة له (الهيدروجين أو الهليوم).

ملحوظة إيضاحية

صممت هذه النظم لتخفيف محتوى سادس فلوريد اليورانيوم في الغازات الحاملة له إلى جزء واحد في المليون أو أقل، ويجوز أن تشمل بعض المعدات مثل:

- (أ) مبادلات الحرارة بالتبريد وأجهزة فصل في درجات الحرارة المنخفضة قادرة على العمل عند درجات حرارة تصل إلى ١٢٠ درجة مئوية تحت الصفر أو دونها،
- (ب) أو وحدات تبريد قادرة على العمل عند درجات حرارة تصل إلى ١٢٠ درجة مئوية تحت الصفر أو دونها،
- (ج) أو فوهات الفصل النفاثة أو وحدات أنابيب الفصل الدوامي المستخدمة في فصل سادس فلوريد اليورانيوم عن الغازات الحاملة له،
- (د) أو المصائد الباردة لسادس فلوريد اليورانيوم القادرة على العمل عند درجات حرارة تصل إلى ٢٠ درجة مئوية تحت الصفر أو دونها.

٥-٦ النظم والمعدات والمكونات المصممة أو المعدة خصيصاً لاستخدامها في مصانع الإثراء بالتبادل الكيميائي أو التبادل الأيوني

ملحوظة تمهيدية

تؤدي الاختلافات البسيطة في الكتلة بين نظائر اليورانيوم إلى حدوث تغيرات طفيفة في توازنات التفاعلات الكيميائية يمكن أن تكون بمثابة أساس لفصل النظائر. وقد استحدثت بنجاح عمليتان هما: التبادل الكيميائي بين السوائل، والتبادل الأيوني بين مادة صلبة وأخرى سائلة.

ففي عملية التبادل الكيميائي بين السوائل، يجري اتصال في الاتجاه المعاكس بين أطوار السوائل غير القابلة للامتزاج (المائية والعضوية) لإحداث الأثر التعاقبي لآلاف من مراحل الفصل. ويتألف الطور المائي من كلوريد اليورانيوم في محلول حامض الهيدروكلوريك؛ أما الطور العضوي فيتكون من مادة استخلاص تحتوي على كلوريد اليورانيوم في مذيب عضوي. ويجوز أن تكون الموصلات المستخدمة في سلسلة الفصل التعاقبية أعمدة تبادل بين السوائل (مثل الأعمدة النبضية المزودة بلوحات منخلية) أو الموصلات النابذة للسوائل بالطرد المركزي. ويلزم حدوث تحولات كيميائية (أكسدة واختزال) عند

نهايتي سلسلة الفصل التعاقبية من أجل الوفاء بمتطلبات إعادة الدفق في كل نهاية. وأحد الاهتمامات الرئيسية بالنسبة للتصميم يتمثل في تجنب تلوث مجاري المعالجة ببعض الأيونات الفلزية. ولذا تستخدم أعمدة وأنابيب مصنوعة من البلاستيك ومبطنة به (بما في ذلك استخدام البوليمرات الفلوروكربونية) و/أو مبطنة بالزجاج.

أما في عملية التبادل الأيوني بين المواد الصلبة والسائلة، فإن الإثراء يتم عن طريق الامتزاز/المج في راتينج أو ممتز خاص للتبادل الأيوني يتميز بسرعة عمل فائقة. ويتم تمرير محلول من اليورانيوم في حامض الهيدروكلوريك ومواد كيميائية أخرى عبر أعمدة الإثراء الاسطوانية التي تحتوي على قيعان مبطنة للممتزات. ونظام إعادة الدفق ضروري من أجل استمرارية العملية، لإطلاق اليورانيوم من الممتز إلى التدفقات السائلة بحيث يمكن تجميع النواتج والمخلفات ويتم ذلك باستخدام عوامل كيميائية مناسبة للاختزال/الأكسدة يعاد توليدها بالكامل في دوائر خارجية منفصلة، كما يمكن إعادة توليدها جزئيا داخل أعمدة الفصل النظيري ذاتها. ويقتضي وجود محاليل مركزة ساخنة لحامض الهيدروكلوريك في هذه العملية أن تصنع المعدات من مواد خاصة قادرة على مقاومة التآكل أو تطلى بمثل هذه المواد.

٥-٦-١ أعمدة التبادل بين السوائل (التبادل الكيميائي)

هي أعمدة للتبادل بين السوائل في الاتجاه المعاكس، مزودة بمستازمات للقوى الميكانيكية (أي أعمدة نبضية بلوحات منخلية، وأعمدة لوحات تبادلية، وأعمدة ذات خلاطات توربينية داخلية)، مصممة أو معدة خصيصاً لإثراء اليورانيوم باستخدام عملية التبادل الكيميائي. ومن أجل مقاومة التآكل بمحاليل مركزة لحامض الهيدروكلوريك، تصنع هذه الأعمدة ومكوناتها الداخلية من مواد لدائنية مناسبة (مثل البوليمرات الفلوروكربونية) أو الزجاج أو تطلى بمثل هذه المواد. ويصمم زمن البقاء المرحلي للأعمدة بحيث يكون قصيراً (لا يزيد على ٣٠ ثانية).

٥-٦-٢ الموصلات النابذة للسوائل بالطرد المركزي (التبادل الكيميائي)

هي موصلات نابذة للسوائل بالطرد المركزي مصممة أو معدة خصيصاً لإثراء اليورانيوم باستخدام عملية التبادل الكيميائي. وتستخدم مثل هذه الموصلات الدوران في تشتيت المجاري العضوية والمائية ثم قوة الطرد المركزي لفصل الأطوار. ومن أجل مقاومة التآكل بالمحاليل المركزة لحامض الهيدروكلوريك، تصنع الموصلات من مواد لدائنية مناسبة (مثل البوليمرات الفاوروكربونية) أو تبطن بها أو بالزجاج. ويراعى في تصميم زمن البقاء المرحلي للموصلات النابذة بالطرد المركزي أن يكون قصيراً (لا يتجاوز ٣٠ ثانية).

٥-٦-٣ نظم ومعدات اختزال اليورانيوم (التبادل الكيميائي)

(أ) هي خلايا اختزال إلكتروكيميائية مصممة أو معدة خصيصاً لاختزال اليورانيوم من حالة تكافؤ إلى أخرى بالنسبة لإثراء اليورانيوم باستخدام عملية التبادل الكيميائي. ويجب أن تكون مواد الخلايا الملامسة لمحاليل المعالجة قادرة على مقاومة التآكل بالمحاليل المركزة لحامض الهيدروكلوريك.

ملحوظة إيضاحية

يراعى في تصميم حجيرة الخلايا الكاثودية أن تمنع إعادة أكسدة اليورانيوم إلى حالة التكافؤ الأعلى. وحتى يمكن الاحتفاظ باليورانيوم في الحجيرة الكاثودية، يجوز أن تزود الخلية بغشاء حاجز كتيم مكون من مواد خاصة لتبادل الكاتيونات. ويتألف الكاثود من موصل صلب مناسب كالجرافيت.

(ب) هي نظم مصممة أو معدة خصيصاً في نهاية ناتج السلسلة التعاقبية لإخراج اليورانيوم من المجرى العضوي، وضبط التركيز الحمضي وتغذية خلايا الاختزال الإلكتروكيميائي.

ملحوظة إيضاحية

تتألف هذه النظم من معدات استخلاص للمذيبات من أجل إزاحة اليورانيوم ألم من المجرى العضوي إلى محلول مائي، ومعدات تبخير و/أو معدات أخرى لضبط ومراقبة نسبة تركيز أيونات الهيدروجين في المحلول، ومضخات أو أجهزة أخرى لنقل التغذية إلى خلايا الاختزال الإلكتروكيميائي. ومن الاعتبارات الرئيسية التي يجب مراعاتها في التصميم تجنب تلوث المجرى المائي ببعض الأيونات الفلزية. وعلى ذلك يتم بناء النظام، بالنسبة للأجزاء الملامسة لمجرى المعالجة، من معدات مصنوعة من مواد مناسبة (مثل الزجاج وبوليمرات الفلوروكربون، وكبريتات البوليفينيل، وسلفون البولي إيثر، والجرافيت المشرّب بالراتينج) أو مغطاة بطبقة منها.

٥-٦-٤ نظم تحضير التغذية (التبادل الكيميائي)

هي نظم مصممة أو معدة خصيصاً لإنتاج محاليل التغذية بكلوريد اليورانيوم العالي النقاء الخاصة بمصانع فصل نظائر اليورانيوم بالتبادل الكيميائي.

ملحوظة إيضاحية

تتكون هذه النظم من معدات للإذابة واستخلاص المذيبات و/أو التبادل الأيوني لأغراض التنقية، وخلايا تحليل كهربائي لاختزال اليورانيوم أو اليورانيوم ألى اليورانيوم أو اليورانيوم النوم النظم محاليل كلوريد اليورانيوم التي لا تحتوي إلا على بضعة أجزاء في المليون من الشوائب الفلزية مثل الكروم، والحديد، والفاناديوم، والموليبدنوم، والكاتيونات الأخرى الثنائية التكافؤ أو المتعددة التكافؤ الأعلى منها. والمواد المستخدمة في بناء أجزاء من النظام الذي يعالج اليورانيوم العالى النقاء تشمل الزجاج أو بوليمرات الفلوروكربون، أو كبريتات البوليفينيل، أو الجرافيت المبطن بلدائن سلفون البولي إيثر المشرب بالراتينج.

٥-٦-٥ نظم أكسدة اليورانيوم (التبادل الكيميائي)

هي نظم مصممة أو معدة خصيصاً لأكسدة اليورانيوم[†] إلى يورانيوم[†] بغرض إعادته إلى سلسلة فصل نظائر اليورانيوم التعاقبية في عملية الإثراء بالتبادل الكيميائي.

ملحوظة إيضاحية

يجوز أن تشمل هذه النظم معدات مثل:

- (أ) معدات لتوصيل الكلور والأكسجين بالدفق المائي من معدات الفصل النظيري، واستخلاص اليورانيوم ألى الناتج في المجرى العضوي الذي أزيل منه عند عودته من نهاية النواتج الخاصة بالسلسلة التعاقبية،
- (ب) معدات لفصل الماء عن حامض الهيدروكلوريك حتى يمكن إعادة إدخال الماء وحامض الهيدروكلوريك المركز إلى العملية في المواقع الملائمة.

٥-٦-٦ راتينجات/ممتزات التبادل الأيوني السريعة التفاعل (التبادل الأيوني)

هي راتينجات أو ممتزات سريعة التفاعل للتبادل الأيوني مصممة أو معدة خصيصاً لإثراء اليورانيوم باستخدام عملية التبادل الأيوني، بما في ذلك الراتينجات المسامية ذات الشبكات الكبيرة، و/أو الهياكل الرقيقة الأغشية التي تتحصر فيها مجموعات التبادل الكيميائي النشط في طبقة على سطح هيكل داعم مسامي خامل، والهياكل المركبة الأخرى بأي شكل مناسب، بما في ذلك الجسيمات أو الألياف. ولا يزيد قطر راتينجات/ممتزات التبادل الأيوني هذه على ٢٠٠ مم، ويجب أن تكون قادرة كيميائياً على مقاومة محاليل حامض الهيدروكلوريك المركز وأن تكون ذات قوة مادية تكفل عدم تحللها في أعمدة التبادل. والراتينجات/الممتزات مصممة خصيصاً لبلوغ حركة سريعة جداً في تبادل نظائر اليورانيوم (معدل التبادل لا يزيد على ١٠٠ ثوانٍ في نصف الوقت)، وقادرة على العمل في درجة حرارة تتراوح من ١٠٠٠ درجة مؤوية.

٥-٦-٧ أعمدة التبادل الأيوني (التبادل الأيوني)

هي أعمدة اسطوانية الشكل يزيد قطرها على ١٠٠٠ مم لاحتواء ودعم القيعان المبطنة لراتينجات/ممتزات التبادل الأيوني، مصممة أو معدة خصيصاً لإثراء اليورانيوم باستخدام عملية التبادل الأيوني. وهذه الأعمدة مصنوعة من مواد (مثل التيتانيوم أو اللدائن الفلوروكربونية) قادرة على مقاومة التآكل بمحاليل حامض الهيدروكلوريك المركز أو مطلية بمثل هذه المواد، وتكون قادرة على العمل في درجة حرارة تتراوح من ١٠٠٠ إلى ٢٠٠ درجة مئوية، وبمستويات ضغط تتجاوز ٧،٠ ميجاباسكال (١٠٠ رطل/بوصة مربعة).

٥-٦-٨ نظم إعادة دفق التبادل الأيوني (التبادل الأيوني)

- (أ) نظم اختزال كيميائي أو إلكتروكيميائي مصممة أو معدة خصيصاً لإعادة توليد عامل (عوامل) الاختزال الكيميائي المستخدم في السلاسل التعاقبية لإثراء اليورانيوم بالتبادل الأيوني.
- (ب) ونظم أكسدة كيميائية أو إلكتروكيميائية مصممة أو معدة خصيصاً لإعادة توليد عامل (عوامل) الأكسدة الكيميائية المستخدم في السلاسل التعاقبية لإثراء اليورانيوم بالتبادل الأيوني.

ملحوظة إيضاحية

يجوز في عملية الإثراء بالتبادل الأيوني أن يستخدم التيتانيوم الثلاثي التكافؤ (التيتانيوم †)، على سبيل المثال، باعتباره كاتيون اختزال، وفي هذه الحالة يعيد نظام الاختزال توليد التيتانيوم † عن طريق اختزال التيتانيوم † .

كما يمكن في هذه العملية استخدام الحديد الثلاثي التكافؤ (الحديد $^{1+}$) كمؤكسد، وفي هذه الحالة يعيد نظام الأكسدة توليد الحديد $^{1+}$ عن طريق أكسدة الحديد $^{1+}$.

٥-٧ النظم والمعدات والمكونات المصممة أو المعدة خصيصاً لاستخدامها في مصانع الإثراء بطريقة الليزر

ملحوظة تمهيدية

تندرج النظم الحالية لعمليات الإثراء باستخدام الليزر في فئتين وهما: النظم التي يكون فيها وسيط العملية هو بخار اليورانيوم الذري، والنظم التي يكون فيها وسيط العملية هو بخار مركب يورانيوم. وتشمل الرموز الشائعة لمثل هذه العمليات ما يلي: الفئة الأولى - فصل نظائر الليزر بالبخار السذري (AVLIS) أو AVLIS)؛ الفئة الثانية - الفصل النظيري بالليزر الجزيئي (MOLIS) أو MALIS) والتفاعل الكيميائي عن طريق تنشيط الليزر الانتقائي النظيري (CRISLA). وتشمل النظم والمعدات والمكونات المستخدمة في مصانع إثراء الليزر ما يلي: (أ) أجهزة المتغذية ببخار فلز اليورانيوم (التأيين الضوئي الانتقائي) أو أجهزة للتغذية ببخار مركب اليورانيوم (التفكيك الضوئي أو التنشيط الكيميائي)؛ الأولى، وأجهزة لجمع فلز اليورانيوم المثرى والمستنفد في شكل انواتج! والمواد البسيطة في شكل المواتج! والمواد البسيطة في شكل مخلفات! بالنسبة للفئة الثانية؛ (ج) نظم معالجة بالليزر من أجل الحست الانتقائي لأنواع اليورانيوم ومركباته إدراج أي من تكنولوجيات الليزر المتاحة.

ملحوظة إيضاحية

يتصل العديد من المفردات التي يرد سردها في هذا الجزء اتصالاً مباشراً ببخار أو سائل فلز اليورانيوم، أو بغازات المعالجة التي تتكون من سادس فلوريد اليورانيوم أو مزيج من هذا الغاز وغازات أخرى. وتصنع جميع الأسطح الملامسة لليورانيوم أو سادس فلوريد اليورانيوم بالكامل من مواد قادرة على مقاومة التآكل أو تطلى بمثل هذه المواد. ولأغراض الجزء المتعلق بمفردات الإثراء المعتمدة على الليزر، تشمل المواد القادرة على مقاومة التآكل ببخار أو سائل فلز اليورانيوم أو سبائك اليورانيوم الجرافيت المطلي بالإيتريوم والتنتالوم؛ أما المواد القادرة على مقاومة التآكل بسادس فلوريد اليورانيوم فتشمل النحاس، والصلب غير القابل للصدأ، والألومينيوم، وسبائك الألومينيوم، والنيكل أو السبائك التي تحتوي على نسبة لا تقل عن ٦٠% من النيكل، والبوليمرات الهيدروكربونية المفلورة فلورة كاملة والقادرة على مقاومة سادس فلوريد اليورانيوم.

٥-٧-١ نظم تبخير اليورانيوم (AVLIS)

نظم مصممة أو معدة خصيصاً لتبخير اليورانيوم، تحتوي على قدرة عالية لنزع الإلكترونات أو مسح مخانق الأشعة الإلكترونية بقدرة موجهة لا تقل عن ٥ر ٢ كيلوواط/سم.

٥-٧-٢ نظم مناولة فلزات اليورانيوم السائلة (AVLIS)

نظم مناولة فلزات سائلة مصممة أو معدة خصيصاً لليورانيوم المصهور أو سبائكه، تتكون من بوتقات ومعدات التبريد الخاصة بها.

ملحوظة إيضاحية

تصنع البوتقات وأجزاء هذا النظام الأخرى التي تلامس اليورانيوم المصهور أو سبائكه من مواد قادرة على مقاومة التآكل والحرارة بصورة مناسبة أو تطلى بمثل هذه المواد. وتشمل المواد المناسبة التنتالوم، والجرافيت المطلى بالإيتريوم، والجرافيت المطلى بأكاسيد أخرى أرضية نادرة أو مزيج منها.

٥-٧-٣ مجمعات انواتج او امخلفات افلز اليورانيوم (AVLIS)

هي مجمعات انواتجا وامخلفات مصممة أو معدة خصيصاً لفلز اليورانيوم في الشكل السائل أو الصلب.

ملحوظة إيضاحية

تصنع مكونات هذه المجمعات من مواد قادرة على مقاومة الحرارة والتآكل ببخار أو سائل فلز اليورانيوم (مثل الجرافيت المطلي بالإيتريوم أو التنتالوم) أو تطلى بمثل هذه المواد، ويجوز أن تشمل أنابيب، وصمامات، ولوازم، و اميازيب، وأجهزة تلقيم، ومبادلات حرارة وألواح تجميع خاصة بأساليب الفصل المغنطيسي أو الإلكتروستاتي أو غير ذلك من الأساليب.

٥-٧-٤ حاويات نماذج أجهزة الفصل (AVLIS)

هي أوعية اسطوانية أو مستطيلة الشكل مصممة أو معدة خصيصاً لاحتواء مصدر بخار فلز اليورانيوم ومخنق الأشعة الإلكترونية، ومجمعات النواتج و المخلفات .

ملحوظة إيضاحية

هذه الحاويات بها عدد وافر من المنافذ الخاصة بأجهزة التغذية بالكهرباء والمياه، وصمامات لأشعة الليزر، وتوصيلات لمضخات التفريغ، وأجهزة لتشخيص أعطال الأجهزة ومراقبتها. كما تتوفر بها وسائل للفتح والإغلاق من أجل إتاحة تجديد المكونات الداخلية.

٥-٧-٥ الفوهات النفاثة للتمدد فوق الصوتى (MLIS)

هي فوهات نفاثة للتمدد فوق الصوتي مصممة أو معدة خصيصاً لتبريد مزيج سادس فلوريد اليورانيوم والغازات الحاملة له إلى ١٥٠ كلفين أو أدنى، وهي قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم.

٥-٧-٦ مجمعات نواتج خامس فلوريد اليورانيوم (MLIS)

هي مجمعات مصممة أو معدة خصيصاً للنواتج الصلبة الخاصة بخامس فلوريد اليورانيوم، وتتألف من مجمعات مرشحية أو صدمية أو حلزونية، أو توليفة منها، قادرة على مقاومة التآكل في الوسط الذي يحتوى على خامس فلوريد اليورانيوم/سادس فلوريد اليورانيوم.

٥-٧-٧ ضاغطات سادس فلوريد اليورانيوم/الغازات الحاملة له (MLIS)

هي ضاغطات مصممة أو معدة خصيصاً لمزيج سادس فلوريد اليورانيوم/الغازات الحاملة له، ومصممة للتشغيل الطويل الأجل في الوسط الذي يحتوي على سادس فلوريد اليورانيوم. وتصنع مكوناتها الملامسة لغاز المعالجة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو تطلى بمثل هذه المواد.

٥-٧-٨ سدادات العمود الدوار (MLIS)

هي سدادات العمود الدوار المصممة أو المعدة خصيصاً بتوصيلات تغذية وتوصيلات تصريف للسدادات من أجل إغلاق العمود الذي يوصل الأعمدة الدوارة للضاغطات بمحركات التشغيل لضمان عولية السدادات ومنع تسرب غاز المعالجة إلى الخارج أو منع تسرب الهواء أو غاز السدادات إلى الغرفة الداخلية للضاغط الملئ بسادس فلوريد اليورانيوم/الغازات الحاملة له.

٥-٧-٩ نظم الفلورة (MLIS)

هي نظم مصممة أو معدة خصيصاً لفلورة خامس فلوريد اليورانيوم (الصلب) للحصول على سادس فلوريد اليورانيوم (الغازي).

ملحوظة إيضاحية

هذه النظم مصممة لفلورة مسحوق خامس فلوريد اليورانيوم الذي يتم جمعه للحصول على سادس فلوريد اليورانيوم ومن ثم جمعه في حاويات للنواتج، أو لنقله كتغذية إلى وحدات MLIS للمزيد من الإثراء. ويجوز، في أحد النهج، إجراء تفاعل الفلورة داخل نظام الفصل النظيري بحيث يتم التفاعل والاستعادة مباشرة خارج مجمعات النواتج! كما يمكن، في نهج آخر، سحب/نقل مسحوق خامس فلوريد اليورانيوم من مجمعات النواتج! إلى وعاء مناسب للتفاعل (مثل مفاعل ذي قاع مائع، أو مفاعل حلزوني، أو برج متوهج بغرض الفلورة. وتستخدم في كلا النهجين معدات لخزن ونقل الفلور (أو غيره من عوامل الفلورة المناسبة) ولجمع سادس فلوريد اليورانيوم ونقله.

٥-٧-١ المطيافات الكتلية/المصادر الأيونية لسادس فلوريد اليورانيوم (MLIS)

هي مطيافات كتلية مغنطيسية أو رباعية الأقطاب مصممة أو معدة خصيصاً ولديها إمكانية لأخذ عينات امباشرة امن التغذية أو النواتج أو المخلفات الممن المجاري الغازية لسادس فلوريد اليورانيوم وتتميز بالخصائص التالية جميعها:

- ۱- تحلیل و حدة لکتلة تزید علی ۳۲۰؛
- ٢- مصادر أيونية مبنية من النيكروم أو المونل أو مبطنة بهما أو مطلية بالنيكل؛
 - ٣- مصادر تأيين بالرجم الإلكتروني؛
 - ٤- نظام مجمعي مناسب التحليل النظيري.

٥-٧-١ نظم التغذية/نظم سحب النواتج والمخلفات (MLIS)

هي نظم أو معدات معالجة مصممة أو معدة خصيصاً لمحطات الإثراء، مصنوعة من مواد قادرة على مقاومة التآكل بسادس فلوريد اليورانيوم أو مطلية بمثل هذه المواد، وتشمل ما يلي:

- (أ) محمّيات تغذية، أو مواقد، أو نظماً تستخدم في تمرير سادس فلوريد اليورانيوم إلى عملية الإثراء؛
- (ب) محولات من الحالة الغازية إلى الحالة الصلبة (أو مصائد باردة) تستخدم في سحب سادس فلوريد اليورانيوم من عملية الإثراء لنقله بعد ذلك عند تسخينه؛
- (ج) محطات تصليد أو تسييل تستخدم في سحب سادس فلوريد اليورانيوم من عملية الإثراء عن طريق ضغطه وتحويله إلى الشكل السائل أو الصلب؛
 - (د) محطات انواتج اأو امخلفات اتستخدم في نقل سادس فلوريد اليورانيوم في حاويات.

٥-٧-١ نظم فصل سادس فلوريد اليورانيوم/الغازات الحاملة له (MLIS)

هي نظم معالجة مصممة أو معدة خصيصاً لفصل سادس فلوريد اليورانيوم من الغازات الحاملة له. ويمكن أن تكون الغازات الحاملة هي النتروجين أو الأرجون أو غازات أخرى.

ملحوظة إيضاحية

يجوز أن تشمل هذه النظم معدات مثل:

- (أ) مبادلات حرارة أو فواصل تعمل عند درجات حرارة منخفضة قادرة على تحمل درجات حرارة تصل إلى ١٢٠ درجة مئوية تحت الصفر أو دونها،
- (ب) أو وحدات تبريد تعمل عند درجات حرارة منخفضة قادرة على تحمل درجات حرارة تصل الى ١٢٠ درجة مئوية تحت الصغر أو دونها،
- (ج) أو مصائد باردة لسادس فلوريد اليورانيوم قادرة على تحمل درجات حرارة تصل إلى ٢٠ درجة مئوية تحت الصفر أو دونها.

٥-٧-١٣ نظم الليزر (AVLIS و MLIS و CRISLA

هي ليزرات أو نظم ليزرية مصممة أو معدة خصيصاً لفصل نظائر اليورانيوم.

ملحوظة إيضاحية

عادة ما يتكون نظام الليزر الخاص بعملية AVLIS من نوعين من الليزر وهما: ليزر بخار النحاس والليزر الصبغي. أما نظام الليزر المستخدم في MLIS فيتكون عادة من ليزر ثاني أكسيد الكربون أو ليزر إكزيمر وخلية ضوئية متعددة الطرق ذات مرايا دوارة في نهايتيها. وتقتضي أشعة الليزر أو نظم الليزر المستخدمة في كلتا العمليتين وجود مثبت لذبذبات الطيف لأغراض التشغيل لفترات زمنية ممتدة.

٥-٨ النظم والمعدات والمكونات المصممة أو المعدة خصيصاً لاستخدامها في مصانع الإثراء بالفصل البلازمي

ملحوظة تمهيدية

في عملية الفصل البلازمي، تمر بلازما أيونات اليورانيوم عبر مجال كهربائي يتم ضبطه على ذبذبة الرنين الأيوني لليورانيوم-٢٣٥ بحيث تستوعب الطاقة على نحو تفضيلي ويزداد قطر مداراتها اللولبية. ويتم اصطياد الأيونات ذات الممرات الكبيرة الأقطار لإيجاد ناتج مثرى باليورانيوم-٢٣٥. أما البلازما، التي تتكون عن طريق تأيين بخار اليورانيوم، فيجري احتواؤها في حجيرة تفريغ ذات مجال مغنطيسي عالي القدرة ينتج باستخدام مغنطيس فائق التوصيل. وتشمل النظم التكنولوجية الرئيسية للعملية نظام توليد بلازما اليورانيوم، ونموذج جهاز الفصل المزود بمغنطيس فائق التوصيل، ونظم سحب الفلزات بغرض جمع النواتج! والمخلفات!

٥-٨-١ مصادر وهوائيات القدرة الدقيقة الموجات

هي مصادر وهوائيات القدرة الدقيقة الموجات، المصممة أو المعدة خصيصاً لإنتاج أو تعجيل الأيونات، وتتميز بالخصائص التالية: ذبذبة تزيد على ٣٠ جيجاهرتز، ومتوسط ناتج قدرة يزيد على ٥٠ كيلوواط لإنتاج الأيونات.

٥-٨-٢ ملفات الحث الأيوني

هي ملفات حث أيوني ذات ذبذبات لاسلكية مصممة أو معدة خصيصاً لترددات تزيد على ١٠٠ كيلو هرتز ولديها إمكانية لمعالجة قدرة متوسطة تزيد على ٤٠ كيلو واط.

٥-٨-٣ نظم توليد بلازما اليورانيوم

هي نظم مصممة أو معدة خصيصاً لتوليد بلازما اليورانيوم، يمكن أن تنطوي على أجهزة إطلاق أشعة الكترونية للنزع أو المسح بقدرة موجهة تزيد على ٥ر ٢ كيلوواط/سم.

٥-٨-٤ نظم مناولة فلز اليورانيوم السائل

هي نظم لمناولة الفلزات السائلة مصممة أو معدة خصيصاً لليورانيوم المصهور أو سبائكه، وتتكون من بوتقات ومعدات التبريد اللازمة لها.

ملحوظة إيضاحية

تصنع البوتقات وأجزاء هذا النظام الأخرى التي تلامس اليورانيوم المصهور أو سبائكه من مواد قادرة على مقاومة التآكل والحرارة على نحو مناسب، أو تطلى بمثل هذه المواد. وتشمل المواد المناسبة التنتالوم والجرافيت المطلي بالإيتريوم، والجرافيت المطلي بأكاسيد أخرى أرضية نادرة أو مزيج منها.

٥-٨-٥ مجمعات انواتج او امخلفات افلز اليورانيوم

هي مجمعات انواتجا و امخلفات ا مصممة أو معدة خصيصاً لفلز اليورانيوم في شكله الصلب. وتصنع هذه المجمعات من مواد قادرة على مقاومة الحرارة والتآكل ببخار فلز اليورانيوم، مثل الجرافيت المطلى بالإيتريوم أو التنتالوم أو تطلى بمثل هذه المواد.

٥-٨-٦ أوعية نماذج أجهزة الفصل

هي أوعية اسطوانية مصممة أو معدة خصيصاً لاستخدامها في مصانع الإثراء بالفصل البلازمي بغرض احتواء مصدر بلازما اليورانيوم، وملف توصيل الترددات اللاسلكية، ومجمعات النواتج، والمخلفات،

ملحوظة إيضاحية

هذه الأوعية مزودة بعدد وافر من المنافذ لفتحات التغذية الكهربائية، وتوصيلات لمضخات الانتشار، ونظم لتشخيص ومراقبة أعطال الأجهزة. كما تتوفر بها وسائل للفتح والإغلاق من أجل إتاحة تجديد المكونات الداخلية، وهي مبنية من مواد غير مغنطيسية مناسبة مثل الصلب غير القابل للصدأ.

٩-٩ النظم والمعدات والمكونات المصممة أو المعدة خصيصاً لاستخدامها في محطات الإثراء الكهرمغنطيسي

ملحوظة تمهيدية

يتم في المعالجة الكهرمغنطيسية تعجيل أيونات فلز اليورانيوم المنتجة عن طريق تأيين مادة تغذية ملحية (رابع كلوريد اليورانيوم عادة) وتمريرها عبر مجال مغنطيسي يؤثر على النظائر المختلفة بتوجيهها إلى مسارات مختلفة. وتشمل المكونات الرئيسية لجهاز الفصل الكهرمغنطيسي للنظائر ما يلي: مجال مغنطيسي لتحويل/فصل النظائر بالأشعة الأيونية، ومصدراً أيونياً بنظام التعجيل الخاص به، ونظاماً لتجميع الأيونات المفصولة. وتشمل النظم الإضافية للمعالجة نظام الإمداد بالقدرة المغنطيسية، ونظام إمداد مصدر الأيونات بقدرة ذات فلطية عالية، ونظام التفريغ، ونظم المناولة الكيميائية الموسعة الاستعادة النواتج وتنظيف/إعادة تدوير المكونات.

٥-٩-١ أجهزة فصل النظائر الكهرمغنطيسية

هي أجهزة كهرمغنطيسية لفصل النظائر مصممة أو معدة خصيصاً لفصل نظائر اليورانيوم، ومعداتها ومكوناتها، وتشمل ما يلي:

(أ) المصادر الأيونية

هي مصادر مفردة أو متعددة لأيونات اليورانيوم مصممة أو معدة خصيصاً، تتكون من مصدر للبخار، ومؤين، ومعجل أشعة، وهي مبنية من مواد مناسبة مثل الجرافيت، أو الصلب الذي لا يصدأ، أو النحاس، ولديها قابلية لتوفير تيار إجمالي للأشعة الأيونية لا يقل عن ٥٠ ملي أمبير.

(ب) المجمعات الأيونية

هي لوحات مجمعية مكونة من شقين أو أكثر وجيوب مصممة أو معدة خصيصاً لتجميع أشعة أيونات اليورانيوم المثرى والمستنفد، ومبنية من مواد مناسبة مثل الجرافيت أو الصلب غير القابل للصدأ.

(ج) أوعية التفريغ

هي أوعية تفريغ مصممة أو معدة خصيصاً لأجهزة فصل اليورانيوم الكهرمغنطيسية، مبنية من مواد غير مغنطيسية مناسبة، مثل الصلب غير القابل للصدأ، ومصممة للتشغيل بضغط لا يزيد علي ١،٠٠ باسكال.

ملحوظة إيضاحية

هذه الأوعية مصممة خصيصاً لاحتواء المصادر الأيونية ولوحات التجميع والمبطنات المبردة بالماء، وتتوفر بها توصيلات مضخات الانتشار وإمكانية للفتح والإغلاق لإزالة هذه المكونات وإعادة تركيبها.

(c) أجزاء الأقطاب المغنطيسية

هي أجزاء مصممة أو معدة خصيصاً للأقطاب المغنطيسية يزيد قطرها على مترين تستخدم في المحافظة على مجال مغنطيسي ثابت داخل أجهزة فصل النظائر الكهر مغنطيسية وفي نقل المجال المغنطيسي بين أجهزة الفصل المجاورة.

٥-٩-٢ إمدادات القدرة العالية الفلطية

هي إمدادات عالية الفلطية مصممة أو معدة خصيصاً للمصادر الأيونية، وتتميز بالخصائص التالية جميعها: قابلية للتشغيل المستمر، وفلطية خرج لا تقل عن ٢٠٠٠٠ فلط، وتيار خرج لا يقل عن ١ أمبير، وتنظيم فلطية بنسبة أفضل من ٢٠٠٠% على مدى فترة زمنية طولها ٨ ساعات.

٥-٩-٣ إمدادات القدرة المغنطيسية

هي إمدادات قدرة مغنطيسية بتيار مباشر وقدرة عالية مصممة أو معدة خصيصاً، وتتميز بالخصائص التالية جميعها: قابلية لإنتاج خرج تيار لا يقل عن ٥٠٠ أمبير على نحو مستمر بفلطية لا تقل عن ١٠٠ فلط وتنظيم التيار أو الفلطية بنسبة أفضل من ٥٠٠٠% على مدى فترة طولها ٨ ساعات.

مصانع إنتاج الماء الثقيل والديوتيريوم ومركبات الديوتيريوم والمعدات المصممة أو المعدة خصيصاً لها

ملحوظة تمهيدية

يمكن إنتاج الماء الثقيل بعمليات متنوعة. بيد أن هناك عمليتين أثبتتا جدواهما من الناحية التجارية: عملية تبادل الماء وكبريتيد الهيدروجين (عملية ذوبان الغاز)، وعملية تبادل النشادر والهيدروجين.

وتقوم العملية الأولى على تبادل الهيدروجين والديوتيريوم بين الماء وكبريتيد الهيدروجين داخل سلسلة أبراج يجري تشغيلها بينما يكون الجزء الأعلى بارداً والجزء الأسفل ساخناً. ويتدفق الماء إلى أسفل الأبراج بينما تجري دورة غاز كبريتيد الهيدروجين من أسفل الأبراج إلى أعلاها. وتستخدم سلسلة من الصواني المثقبة لتيسير اختلاط الغاز والماء. وينتقل الديوتيريوم إلى الماء حيث تكون درجات الحرارة منخفضة، وإلى كبريتيد الهيدروجين حيث تكون درجات الحرارة عالية. ويزاح الغاز أو الماء المثرى بالديوتيريوم من أبراج المرحلة الأولى عند نقطة التقاء الجزء الساخن والجزء البارد، وتتكرر العملية في أبراج المرحلة التالية. والماء المثرى بالديوتيريوم بنسبة تصل إلى ٣٠%، الذي يمثل نتاج المرحلة الأخيرة، يرسل إلى وحدة تقطير لإنتاج ماء ثقيل صالح للمفاعلات - أي أكسيد الديوتيريوم بنسبة

أما عملية تبادل النشادر والهيدروجين فيمكن أن تستخرج الديوتيريوم من غاز التركيب عن طريق التماس مع النشادر السائل في وجود مادة حفازة. ويدخل غاز التركيب في أبراج التبادل ثم إلى محول نشادر. ويتدفق الغاز داخل الأبراج من الجزء الأسفل إلى الأعلى بينما يتدفق النشادر السائل من الجزء الأعلى إلى الأسفل. ويجري انتزاع الديوتيريوم من الهيدروجين في غاز التركيب وتركيزه في النشادر. ثم يتدفق النشادر في محول النشادر في الجزء الأعلى. وتتم عملية إثراء إضافي في المراحل التالية، ويتم إنتاج ماء ثقيل صالح للمفاعلات عن طريق التقطير النهائي. ويمكن توفير غاز التركيب اللازم في مصنع نشادر يمكن بناؤه إلى جانب مصنع إنتاج الماء الثقيل عن طريق تبادل النشادر والهيدروجين. كما يمكن أن يستخدم في عملية تبادل النشادر والهيدروجين الماء العادي كمصدر لتوفير الديوتيريوم.

والعديد من أصناف المعدات الرئيسية لمصانع إنتاج الماء الثقيل عن طريق عملية تبادل الماء وكبريتيد الهيدروجين، أو عن طريق عملية تبادل النشادر والهيدروجين، هي أصناف مشتركة في عدة قطاعات من الصناعات الكيميائية والنفطية. وينطبق هذا بشكل خاص على المصانع الصغيرة التي تستخدم عملية تبادل الماء وكبريتيد الهيدروجين. ولكن القليل من هذه الأصناف متاح "بصورة متيسرة". وتتطلب عملية تبادل الماء وكبريتيد الهيدروجين وعملية تبادل النشادر والهيدروجين مناولة كميات كبيرة من السوائل القابلة للالتهاب والمسببة للتآكل والسامة عند ضغوط مرتفعة. وبالتالي يتعين لدى وضع تصميم ومعايير تشغيل المحطات والمعدات التي تستخدم هاتين العمليتين إيلاء اهتمام دقيق لاختيار المواد ومواصفاتها لتأمين عمر تشغيلي طويل وضمان عوامل تكفل مستويات رفيعة من الأمان والعولية. ويعتمد اختيار المقياس بدرجة رئيسية على عوامل اقتصادية وعلى الحاجة. وبالتالي فإن معظم أصناف المعدات سيجرى إعدادها و فقاً لمتطلبات المستخدم.

وأخيرا، ينبغي أن يلاحظ في العمليتين - أي في عملية تبادل الماء وكبريتيد الهيدروجين وعملية تبادل النشادر والهيدروجين - أن أصناف المعدات التي لا تكون، على حدة، مصممة أو معدة خصيصاً لإنتاج الماء الثقيل يمكن تركيبها في نظم مصممة أو معدة خصيصاً لإنتاج الماء الثقيل. ومن الأمثلة على هذه النظم نظام إنتاج المادة الحفازة المستخدمة في عملية تبادل النشادر والهيدروجين، ونظام تقطير الماء المستخدم في التركيز النهائي للماء الثقيل ليكون صالحاً للمفاعلات في كل من العمليتين.

وترد فيما يلي أصناف المعدات المصممة أو المعدة خصيصاً لإنتاج الماء الثقيل باستخدام أي من العمليتين - عملية تبادل الماء وكبريتيد الهيدروجين أو عملية تبادل النشادر والهيدروجين:

٦-١ أبراج تبادل الماء وكبريتيد الهيدروجين

أبراج تبادل مصنوعة من الفولاذ الكربوني الصافي (مثلاً ASTM A516) يتراوح قطرها بين ٦ أمتار (٢٠ قدماً) و ٩ أمتار (٣٠ قدماً)، وتكون قادرة على أن تعمل في ظروف ضغط لا يقل عن ٢ ميجاباسكال (٣٠٠ رطل/بوصة مربعة) وتآكل مسموح به في حدود ٦ ملليمترات أو أكثر. وهي أبراج مصممة أو معدة خصيصاً لإنتاج الماء الثقيل باستخدام عملية تبادل الماء وكبريتيد الهيدروجين.

٢-٦ النفاخات والضاغطات

نفاخات أو ضاغطات بالطرد المركزي وحيدة المرحلة ومنخفضة المنسوب (أي ٢،٠ ميجاباسكال أو ٣٠ رطلاً ببوصة مربعة) لدورة غاز كبريتيد الهيدروجين (أي الغاز الذي يحتوي على كبريتيد الهيدروجين بنسبة تزيد على ٧٠%)؛ وهي مصممة أو معدة خصيصاً لإنتاج الماء الثقيل باستخدام عملية تبادل الماء وكبريتيد الهيدروجين. وهذه النفاخات أو الضاغطات لا تقل قدرتها عن ٥٦ متراً مكعباً ثانية (١٠٠٠ ١٢٠ قدم مكعب معياري في الدقيقة)، بينما تعمل في ظروف ضغط لا يقل عن ١٨٨ ميجاباسكلال (٢٦٠ رطلاً بوصة مربعة)، وتكون محكمة بأختام مصممة لخدمة كبريتيد الهيدروجين الرطب.

٣-٦ أبراج تبادل النشادر والهيدروجين

أبراج لتبادل النشادر والهيدروجين لا يقل ارتفاعها عن ٣٥ متراً (١١٤،٣ قدماً)، ويتراوح قطرها بين ١،٥ متر (٤،٩ أقدام) و ٢٠٥ متر (٨،٢ أقدام)، وتكون قادرة على أن تعمل في ظروف ضغط يتجاوز ١٥ ميجاباسكال (٢٢٢٥ رطلاً/بوصة مربعة)، كما تكون مصممة أو معدة خصيصاً لإنتاج الماء الثقيل باستخدام عملية تبادل النشادر والهيدروجين. وهذه الأبراج تكون فيها على الأقل فتحة واحدة محورية مشفهة قطرها مماثل لقطر الجزء الاسطواني بحيث يمكن إدخال أو سحب أجزاء الأبراج الداخلية.

٦-٤ أجزاء الأبراج الداخلية والمضخات المرحلية

أجزاء أبراج داخلية ومضخات مرحلية مصممة أو معدة خصيصاً لأبراج إنتاج الماء الثقيل باستخدام عملية تبادل النشادر والهيدروجين. وتشمل أجزاء الأبراج الداخلية ملامسات مرحلية مصممة خصيصاً لتحقيق تماس وثيق بين الغاز والسائل. وتشمل المضخات المرحلية مضخات قابلة للتشغيل المغمور ومصممة خصيصاً لدورة النشادر السائل في مرحلة تماس داخلية بالنسبة للأبراج المرحلية.

٦-٥ مكسرات (مقطرات) النشادر

مكسرات (مقطرات) نشادر تعمل في ظروف ضغط لا يقل عن ٣ ميجاباسكال (٤٥٠ رطلاً لبوصة مربعة)، وتكون مصممة أو معدة خصيصاً لإنتاج الماء الثقيل باستخدام عملية تبادل النشادر والهيدروجين.

٦-٦ محللات الامتصاص بالأشعة دون الحمراء

محللات امتصاص بالأشعة دون الحمراء، تكون قادرة على التحليل "المباشر" لنسبة الهيدروجين والديوتيريوم حيث لا تقل نسبة تركيزات الديوتيريوم عن ٩٠%.

٦-٧ الحراقات الوسيطة

حراقات وسيطة لتحويل غاز الديوتيريوم المثرى إلى ماء ثقيل، تكون مصممة أو معدة خصيصاً لإنتاج الماء الثقيل باستخدام عملية تبادل النشادر والهيدروجين.

٧- مصانع تحويل اليورانيوم والمعدات المصممة أو المعدة خصيصاً لها

ملحوظة تمهيدية

يجوز أن تؤدي مصانع ونظم تحويل اليورانيوم عملية تحول واحدة أو أكثر من نوع كيميائي لليورانيوم إلى نوع آخر، بما في ذلك ما يلي: تحويل مركزات خام اليورانيوم إلى ثالث أكسيد اليورانيوم، وتحويل ثالث أكسيد اليور إنيوم إلى ثاني أكسيد اليور إنيوم، وتحويل أكاسيد اليور إنيوم إلى رابع فلوريد اليورانيوم، أو سادس فلوريد اليورانيوم، وتحويل رابع فلوريد اليورانيوم إلى سادس فلوريد اليورانيوم، وتحويل سادس فلوريد اليورانيوم إلى رابع فلوريد اليورانيوم، وتحويل رابع فلوريد اليورانيوم إلى فلز اليورانيوم، وتحويل أملاح فلوريد اليورانيوم إلى ثاني أكسيد اليورانيوم. والعديد من أصناف المعدات الرئيسية لمصانع تحويل اليورانيوم هي أصناف مشتركة في عدة قطاعات من صناعات المعالجة الكيميائية. وترد فيما يلي، على سبيل المثال، أصناف المعدات المستخدمة في هذه العمليات: الأفران، والأتونات الدوارة، والمفاعلات ذات القيعان المائعة، والمفاعلات ذات الأبراج المتوهجة، والطاردات المركزية للسوائل، وأعمدة التقطير، وأعمدة استخراج السوائل. ولكن القليل من هذه الأصناف متاح "بصورة متيسرة"؛ وبالتالي فإن معظمها سيجري إعداده وفقاً لمتطلبات المستخدم ومواصفاته. ويقتضي الأمر، في بعض الحالات، وضع اعتبارات خاصة في التصميم والتشبيد لمراعاة الخواص الأكتالة لبعض الكيماويات التي تتم معالجتها (فلوريد الهيدروجين، والفلور، وثالث فلوريد الكلور، وأملاح فلوريد اليورانيوم). وأخيراً، ينبغي أن يلاحظ في جميع عمليات تحويل اليورانيوم أن أصناف المعدات التي لا تكون، على حدة، مصممة أو معدة خصيصاً لتحويل اليور إنيوم يمكن تركيبها في نظم مصممة أو معدة خصيصاً لاستخدامها في تحويل اليور إنيوم.

٧-١ النظم المصممة أو المعدة خصيصاً لتحويل مركزات خام اليورانيوم إلى ثالث أكسيد اليورانيوم

ملحوظة إيضاحية

يمكن تحويل مركزات خام اليورانيوم إلى ثالث أكسيد اليورانيوم أولاً بإذابة الخام في حامض النتريك واستخراج نترات اليورانيل المنقاة باستخدام مذيب مثل فوسفات ثلاثي البوتيل. ثم يتم تحويل نترات اليورانيل إلى ثالث أكسيد اليورانيوم، إما عن طريق التركيز ونزع النترات أو بمعادلته باستخدام النشادر الغازي لإنتاج ثاني يورانات الأمونيوم مع ما يلي ذلك من ترشيح وتجفيف وتكليس.

٧-٧ النظم المصممة أو المعدة خصيصاً لتحويل ثالث أكسيد اليورانيوم إلى سادس فلوريد اليورانيوم

ملحوظة إيضاحية

يمكن تحويل ثالث أكسيد اليورانيوم إلى سادس فلوريد اليورانيوم عن طريق الفلورة مباشرة. وتتطلب العملية وجود مصدر لغاز الفلور أو ثالث فلوريد الكلور.

٧-٣ النظم المصممة أو المعدة خصيصاً لتحويل ثالث أكسيد اليورانيوم إلى ثاني أكسيد اليورانيوم

ملحوظة إيضاحية

يمكن تحويل ثالث أكسيد اليورانيوم إلى ثاني أكسيد اليورانيوم عن طريق اختزال ثالث أكسيد اليورانيوم باستخدام غاز النشادر المكسر (المقطر) أو الهيدروجين.

١-٤ النظم المصممة أو المعدة خصيصاً لتحويل ثاني أكسيد اليورانيوم إلى رابع فلوريد اليورانيوم

ملحوظة إيضاحية

يمكن تحويل ثاني أكسيد اليورانيوم إلى رابع فلوريد اليورانيوم عن طريق تفاعل ثـاني أكسيد اليورانيوم مع غاز فلوريد الهيدروجين عند درجة حرارة تتراوح بين ٣٠٠ و ٥٠٠ درجة مئوية.

٧-٥ النظم المصممة أو المعدة خصيصاً لتحويل رابع فلوريد اليورانيوم إلى سادس فلوريد اليورانيوم

ملحوظة إيضاحية

يتم تحويل رابع فلوريد اليورانيوم إلى سادس فلوريد اليورانيوم عن طريق التفاعل المصحوب بإطلاق الحرارة باستخدام الفلور في مفاعل برجي. ويجري تكثيف سادس فلوريد اليورانيوم من غازات الدوافق الساخنة عن طريق تمرير مجرى الدوافق عبر مصيدة باردة يتم تبريدها إلى ١٠ درجات مئوية تحت الصفر. وتتطلب العملية وجود مصدر لغاز الفلور.

٧-٦ النظم المصممة أو المعدة خصيصاً لتحويل رابع فلوريد اليورانيوم إلى فلز اليورانيوم

ملحوظة إيضاحية

يتم تحويل رابع فلوريد اليورانيوم إلى فلز اليورانيوم عن طريق اختزاله بالمغنسيوم (دفعات كبيرة) أو الكالسيوم (دفعات صغيرة). ويجري التفاعل عند درجات حرارة تتجاوز نقطة انصهار اليورانيوم (١١٣٠ درجة مئوية).

٧-٧ النظم المصممة أو المعدة خصيصاً لتحويل سادس فلوريد اليورانيوم إلى ثاني أكسيد اليورانيوم

ملحوظة إيضاحية

يمكن تحويل سادس فلوريد اليورانيوم إلى ثاني أكسيد اليورانيوم عن طريق واحدة من ثلاث عمليات. في العملية الأولى، يتم اختزال سادس فلوريد اليورانيوم ويحلل بالماء إلى ثاني أكسيد اليورانيوم بإذابته في باستخدام الهيدروجين والبخار. وفي العملية الثانية، يجري تحليل سادس فلوريد اليورانيوم بإذابته في الماء، ويضاف النشادر لترسيب ثاني يورانات الأمونيوم، ويختزل ملح ثاني يورانات الأمونيوم إلى ثاني أكسيد اليورانيوم باستخدام الهيدروجين بينما تكون درجة الحرارة ٢٨٠ درجة مئوية. أما في العملية الثالثة، فيتم دمج سادس فلوريد اليورانيوم الغازي وثاني أكسيد الكربون والنشادر (ن يد ٣) في الماء، حيث تترسب كربونات يورانيل الأمونيوم. وتدمج كربونات يورانيل الأمونيوم في البخار والهيدروجين عند درجة حرارة تتراوح بين ٥٠٠ و ٢٠٠ درجة مئوية لإنتاج ثاني أكسيد اليورانيوم.

وعملية تحويل سادس فلوريد اليورانيوم إلى ثاني أكسيد اليورانيوم، كثيراً ما تتم باعتبارها المرحلة الأولى في أي مصنع لإنتاج الوقود.

٧-٨ النظم المصممة أو المعدة خصيصاً لتحويل سادس فلوريد اليورانيوم إلى رابع فلوريد اليورانيوم ملحوظة إيضاحية

يتم تحويل سادس فلوريد اليورانيوم إلى رابع فلوريد اليورانيوم عن طريق اختزاله بالهيدروجين.