

Current Status of Carbon Therapy for the Treatment of Cancers

Takashi Nakano, MD, PhD

19–20 September 2017 IAEA Scientific Forum Nuclear Techniques in Human Health

Prevention, Diagnosis, Treatment

Professor of Radiation Oncology Director of Heavy Ion Medical Center Gunma University

Superior dose distribution of Carbons

Radiobiology of Carbon Ions

In addition to the superior dose distribution of carbon beams, the beams have superior biological advantage to x-rays/protons.

X-rays/protons produce single strand DNA breaks which are easy repaired by the radiation resistant tumor cells.

Carbons generate denser ionizations along trajectory than x-rays/ protons and can produce double strand breaks directly and severer DNA damage and stronger cell killing than x-rays/ protons.

The strong effects offers greater tumor control benefits for radiation resistant cancers and locally advanced / large cancers than protons.

X In conventional RT, it takes 6-7 weeks with 25-30 sessions.

Cancers	Fractions/ Periods
Head & Neck Ca.	<u>16 frs / 4 weeks</u>
Lung Ca. (St. I)	1- 4 frs / 1- 4 days
Liver Ca.	4_frs/ <u>4_days</u> !
Prostate Ca.	12 frs / 3 weeks
Sarcoma	16 frs / 4 weeks
Rectum Ca.	16 frs / 4 weeks

•With this short course of treatment, patient's load and interruption of daily life can be minimized.

•, Many patients can be treated (600 ~1000 pts. / year)

Carbon therapy for liver, Lung, pancreas ca. inoperable

Liver ca.

ф98mm

31 Mo. NED

Lung ca. (T2) Before

15 Mo. NED

Pancreas ca.

20 Mo. NED

Before

Carbon therapy for radiation resistant tumors inoperable

Gingiva Malig. Melanoma

before

2y6m ED

Sacral chordoma

Before

IOT & C

Sacral Osteosarcoma

Carbon therapy for radiation resistant tumors inoperable

H&N (Adenoid CC) before പഷനസ 25 Mo. NED

Uterus Ca.

Rectal ca. (post op rec) Before

Summary of Advantages of C-ion RT

 Dose distribution is better than protons in broad beam and scanning beam irradiation.

 \rightarrow Less toxicity

 Radiobiological benefit has been confirmed for photon-resistant tumors including:

- Locally advanced large tumors (hypoxic tumors)
- Non-squamous cell type of epitherial tumors
- Sarcomas
- →improving Local Control

Wider range of clinical indications has been demonstrated. →in Sarcomas, Rectal ca, Pancreas ca

 Hypofractionated short treatment has been feasible in almost all tumors.

 \rightarrow Less burden on and less social disturbance for the patients

 \rightarrow Economically more advantageous to treat many patients / year

Heavy Particle Therapy Institution

Site	Beam	Period	
 Chiba/NIRS (Japan) Hyogo (Japan) Lanzhou (China) 	Carbon Carbon/Proton Carbon	1994~ 2002~ 2006~	
 Heidelberg Univ. (Germany) Gunma Univ. (Japan) 	Carbon/Proton Carbon	2009.11~ 2010.3~	University
Pavia (Italy) Saga(Japan)	Carbon/Proton Carbon	2012~ 2013.8~	
 Shanghai(China) Marburg (Germany) 	Carbon/Proton Carbon/Proton	2014~ 2017~	
 Wiener Neustadt (Austria) Kanagawa (Japan) 	Carbon/Proton Carbon	2017~ 2016	

Thank you for your attention!