Evolution of Radiation Therapy Proton and Carbon lon Beam Radiotherapy Jiade J. Lu, MD, MBA

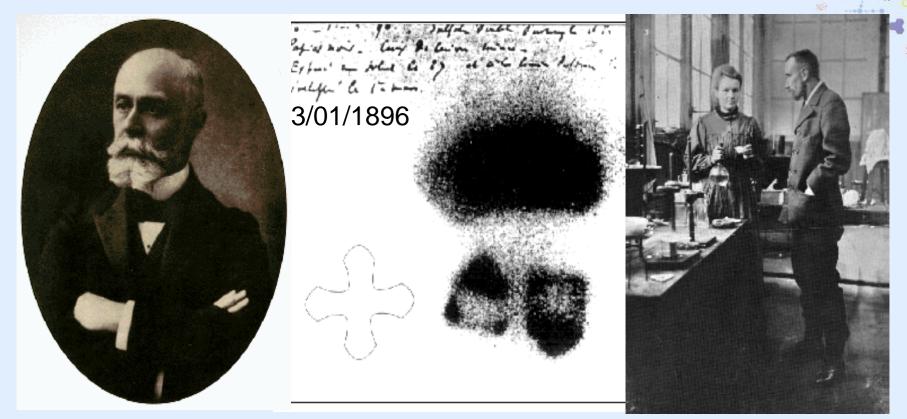
> Professor of Clinical Oncology Executive Vice President Shanghai Proton and Heavy Ion Center

19–20 September 2017 IAEA Scientific Forum Nuclear Techniques in Human Health

Prevention, Diagnosis, Treatment

T Shandhard Heavy

### The Use of Radiation in Cancer Rx


### X (Roentgen) Ray was discovered in 1895



### **Received the 1<sup>st</sup> Nobel Prize of Physics in 1901**

### The Use of Radiation in Cancer Rx

# The Discovery of Uranium (1896) and Radium (1898) by Becquerel and Curries



### Becquere, Pierre & Marie Curie Received the Nobel Prize of Physics in 1903

### The Use of Radiation in Cancer Rx

The 1<sup>st</sup> radiotherapy case in 1896 in Vienna Angioma case treated by Radium by Wickham in 1899



图 2 - 5 - 1 - 1 1896 年, 维也纳第一位成功接受 x 图 2 - 5 - 1 - 2 1899 年, Wickham 等首次利用 线放射治疗病人。70 年后照片 镭疗治愈额头皮肤血管瘤病人

70 years after the treatment

# The History of Radiation in Cancer Rx

- 1896 First case of radiotherapy
- 1920's X-ray therapy for laryngeal cancer; radium therapy for cervical cancer
- 1930's Fractionated radiotherapy by Courtard
- 1950's Co-60 treatment for cancer
- 1954 First patient treated with Proton (Berkeley)
- 1970's Applying CT in the diagnosis and planning for radiotherapy
- 1977 First patients treated with Carbon/Neon
- 1980's Intensity modulated radiotherapy (IMRT)
- 2000's Imaging guided radiotherapy (IGRT)

### **BEVALAC**

#### Lawrence Berkeley Laboratory, BEVatron + SuperHILAC, circa 1974



# Synchrontron & Treatment Room



- Two Ion Sources
  - Proton, 50 250 MeV
  - Carbon, 85 430 MeV
  - Switch time, less than 20 sec
  - Helium and Oxygen (non-medical)





# **Rational for Proton and Heavy Ion Rx**

- 1. The dose delivered to non-target tissues relative to the dose delivered to target tissues is lower than for other radiation beams due to the depth dose distribution.
- 2. The lateral and distal dose gradients are higher than for other radiation beams enabling better splitting of the target and normal tissues.
- 3. For ions such as **carbon**, a differential RBE with depth results in a higher biological dose in target tissues compared to surrounding normal tissues.

### Proton vs. IMRT – Chest Tumor



- ratio of integral dose to body outside target = 1.76
- ratio of volume of body outside target receiving > 2 Gy = 2.47

### Proton vs. IMRT – Prostate Cancer



- ratio of integral dose to body outside target = 1.81
- ratio of volume of body outside target receiving > 2 Gy = 2.59

### The "Ideal" Beam of Cancer Therapy

- Carbon ion Radiotherapy is featured with
  - High Precision physical advantage
  - High Biological Effectiveness biological advantage



Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin Oncol. 2010 Jan;7(1):37-43

### The "Ideal" Beam of Cancer Therapy

- Carbon ion radiation therapy is highly effective for cancer treatment – with more than 20K patients treated
- Investment for a carbon ion radiation facility is vast – e.g., SPHIC cost US\$400 million including a 200-bed hospital

### **Questions**

- 1. Is it need to replace X-ray radiation by CIRT or proton radiation ?
- 2. What are the types of cancer that fit CIRT?

### Select the Right Beam

- The selection of beams
  - Conventional X-ray radiation therapy
  - Particle radiation therapy
- The considerations



