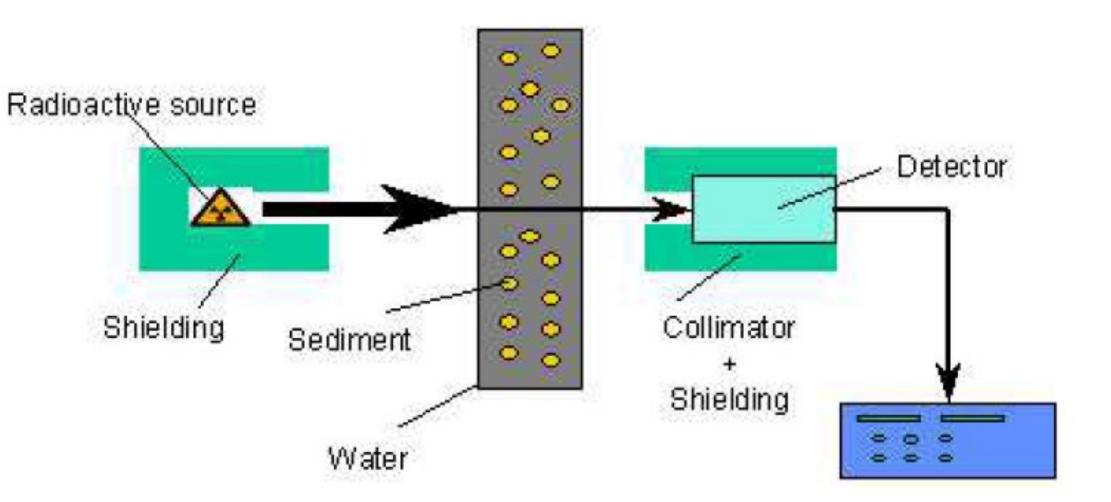


STUDY OF SEDIMENTS IN A SUB-BASIN OF THE PANAMA CANAL USING NUCLEAR TECHNIQUES


<u>K. Broce¹</u>, R. Pinzón¹, I. Arjona¹, M. Barragán¹, P. Brisset², J. Fábrega¹, F. Rivera¹

¹Universidad Tecnológica de Panamá (UTP), Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), P.O.Box 0819-07289, El Dorado, Panamá. <u>reinhardt.pinzon@utp.ac.pa</u> ²International Atomic Energy Agency (IAEA), Wagramerstrasse5 1400, Vienna, Austria.

> International Conference on Applications of Radiation Science and Technology (ICARST 2017)

24 to 28 April 2017, Vienna, Austria

Background. Waste waters contribute to serious pollution problems not just in Panama Canal basin but also at the Panama Bay influencing

marine and coastal environment[1]. One of the goals of this study is to contribute in reducing contamination level to international water quality standards, through an efficient sediment transport monitoring program in a Panama Canal basin. To achieve this goal, it is necessary to study and compare methods, non-nuclear and nuclear techniques, using nucleonic gauge, and comprehend all the processes involved in sediment transport along the Panama Canal basin.

Fig. 2. Scheme of the radiation transmission [3]

Fig. 3. X Ray profiler and winch system/Altaix System

Fig. 1. A view of Alhajuela Lake and a possible sites to study the sediment transport (By Thomas Römer/OpenStreetMap data, CC BY-SA 2.0, <u>https://commons.wikimedia.org/w/index.php</u>?) curid=19678675

Study Sites. Alhajuela Lake: The Alhajuela reservoir, was created by means of the construction of the dam Madden in 1935. It has an area of contribution of sediments of 976 km². Its current water storage capacity is 657.5 Mm³ (Fig.1). At present, it is losing storage capacity due to the great amount of sediments that enter it. [2]

Dredging Pacific and Atlantic sites:Dredging activities to enable safe navigation by Post-Panamax vessels upon completion of the Panama Canal expansion are vital. A total of 8.7 million cubic meters of underwater material were dredged.

Fig. 4. Nal gamma probes and the acquisition equipment

Conclusions: Nuclear techniques. Advantages: easy to detect in-situ at very low levels without any sampling; radiation detectors are easy to install, and nuclear gauges allow evaluate the load efficiency of a particular dredging practice. **The main disadvantages are**: the public concerns; the strict regulation which impose a clearance from the national nuclear safety Authority[3].

References : 1. IAEA Project PAN 7003, Supporting the Panama Bay Contamination Monitoring Program (2012-2013). **2**.

Methodology: Nucleonic Gauge. Nucleonic gauges based on the principle of the absorption of X or γ radiations are known as transmission gauges (Fig. 2) [3]. In the present study a X- Ray Density Profiler Model XDP 30, hooked to a whinch held over a boat, will be used (Fig.

Radiotracers. The radiotracer technique for sediment transport investigation involves preparation of a radioactive particulate tracer[3]. The Technetium- 99m (^{99m}Tc) and NaI gamma probes will be used (Fig.

4).

Impacto de la sedimentación del lago alhajuela en la operación del canal, Reporte HID-011-2013, ACP (2013). **3**. Radiotracer and Sealed Source Applications in Sediment Transport Studies , IAEA, VIENNA, IAEA-TCS-59, (2014).

Acknowledgments

Sistema Nacional de Investigación

Reinhardt Pinzón acknowledges fundings from SNI (Sistema Nacional de Investigación de Panamá) of Secretaria Nacional de Ciencia y Tecnología e Innovación