Universal vaccines against respiratory pathogens

J B Davies¹, M Alsharifi^{2,3}, T Hirst³

¹ Australian Nuclear Science and Technology Organisation
 ² School of Biological Sciences, University of Adelaide
 ³ Gamma Vaccines Pty. Ltd.

International Atomic Energy Agency Scientific Forum

Radiation Technology for Development

15-16 September 2015, Vienna, Austria

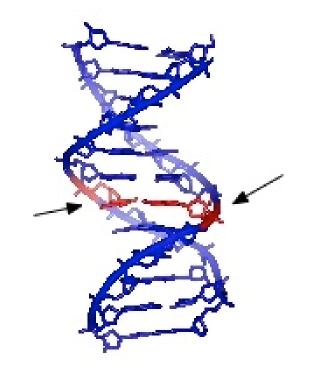
Gamma Irradiation at ANSTO

- Co-60 irradiator since 1970
- Very low (1 Gy) to High (> 50 kGy)
- Precision & Accuracy not achievable in industrial irradiation
- Research & Development underpins industrial radiation processing

Dosimetry

- Precise irradiation is enabled by accurate Dosimetry
- Our dosimetry systems are traceable to the Australian Primary Standard for Absorbed Dose

Dosimeter	Dose range	Uncertainty (95% confidence)
Ionisation chambers	1 mGy to 10 Gy	0.7 %
Fricke	50-350 Gy	2.0 %
Low Dose Ceric Cerous	1-12 kGy	3.0 %
High Dose Ceric Cerous	10-50 kGy	3.5 %


Radiation Sterilisation

Two effects on biological systems: DIRECT EFFECTS:

 Direct interaction with nucleic acids (strand breakage)

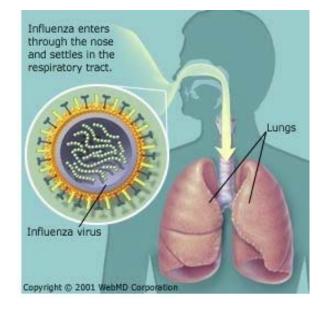
INDIRECT EFFECTS

- generation of short-lived free radicals
- causes excess damage to structural components as well as nucleic acid

- HIGH temperature \rightarrow increases indirect effects
- LOW temperature → reduces indirect effects and direct effects predominate (PROTECTS PROTEINS)

Influenza A virus

TYPES: A, B and C

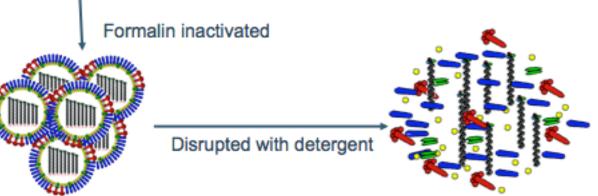

• Type A: (most prevalent) aquatic birds are natural hosts and transmit to humans

TRANSMISSION: airborne droplets

SYMPTOMS: Causes acute inflammation within the upper and lower respiratory tracts

 headache, fever, runny nose, sore throat, coughing

OUTCOME: Causes more than 250,000 deaths annually (elderly and young children more susceptible to disease)



Epidemiology Russia, 1889 [H2N2] Étaples, 1918 [H1N1] 🕈 Shanghai, 2013 [H7N9] Guizhou, 1957 [H2N2] Veracruz, 2009 [H1N1] Hong Kong, 1968 [H3N2]

Year	Flu	Deaths worldwide	
1918/1919	Spanish influenza (H1N1)	50 million	
1957	Asian influenza (H2N2)	4 million	
1968/1969	Hong Kong influenza (H3N2)	4 million	
2009	Swine Flu (H1N1)	200,000	

Current Inactivated Vaccines

Virus grown in eggs

2. Split virus vaccines Disrupted with detergents. fewer side effects No CTL response Induces antibody responses (currently used in Australia)

Whole virus vaccines Inactivated using formalin No CTL responses Induces antibody responses High side effects

Purification of surface proteins

3. Subunit virus vaccines HA and NA antigens Fewer side effects No CTL response The composition of influenza A virus vaccines for use in Southern Hemisphere influenza seasons recommended by the WHO were:

2006 Season

- an A/New Caledonia/20/99 (H1N1)-like virus
- an A/California/7/200 4(H3N2)-like virus

2007 Season

- an A/New Caledonia/20/99 (H1N1)-like virus
- an A/Wisconsin/67/2005 (H3N2)-like virus

2008 Season

- an A/Solomon Islands/3/2006 (H1N1)-like virus
- an A/Brisbane/10/2007 (H3N2)-like virus

2009 Season

- an A/Brisbane/59/2007 (H1N1)-like virus
- an A/Brisbane/10/2007 (H3N2)-like virus

Pandemic H1N1 virus was not part of Flu vaccine composition for 2009 season

2010 Season

- an A/California/7/2009 (H1N1)-like virus
- an A/Perth/16/2009 (H3N2)-like virus

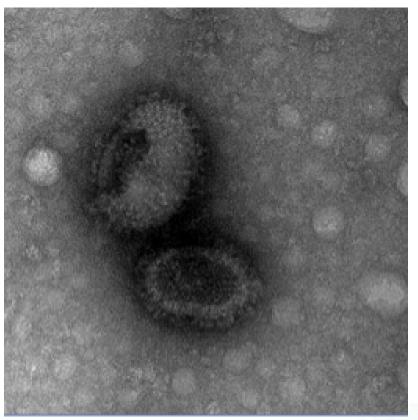
Thus: we are playing a catch up game with influenza virus!

Current Flu vaccines: Strain specific vaccines

What is the alternative: Cross-reactive T-cell based vaccine

- Irradiation to inactivate influenza viruses to create more effective vaccines
- Adelaide University with Gamma Vaccines research to validate commercial product

Gamma-irradiated influenza A virus vaccine



Transmission electron microscopy

A/California/07/2009 H1N1

Gamma-irradiated H1N1

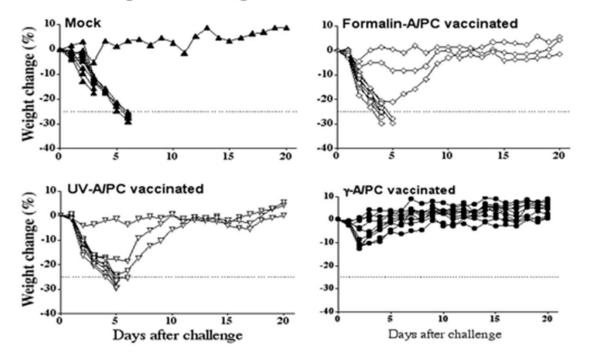
Shannon David

PhD student The University of Adelaide

	Effect of protectiv influenza preparat
	Yoichi Furu Arno Müllba
Correspondence Arno Mülbacher	¹ Viral Immunolo Australian Nati
amo.mulbacher@anueduau	² Microbiology a

Mohammed Alsharifi

mohammed.alsharifi@imvs.sa.gov.au


of inactivation method on the crossive immunity induced by whole 'killed' a A viruses and commercial vaccine tions

uya,¹ Matthias Regner,¹ Mario Lobigs,² Aulikki Koskinen,¹ acher1 and Mohammed Alsharifi1

ogy and Molecular Virology, The John Curtin School of Medical Research, tional University, Canberra, Australian Capital Territory, Australia

²Microbiology and Infectious Diseases, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia

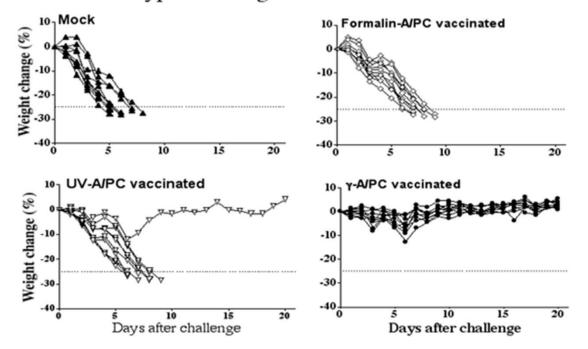
A: Homologous challenge with A/PC

Homotypic challenge with H3N2 (A/PC)

I.N Vaccination	Protection
Formalin-H3N2	NO
UV-H3N2	NO
γ- H3N2	Yes

	Effect of inacti protective imm influenza A viru preparations
	Yoichi Furuya, ¹ Matt Arno Müllbacher ¹ an
nce	Viral Immunology and Mole

Correspondence Arno Mülbacher arno.mulbacher@anueduau Mohammed.Alsharifi mohammed.alsharifi@imvisa.gov.au


Effect of inactivation method on the crossprotective immunity induced by whole 'killed' influenza A viruses and commercial vaccine preparations

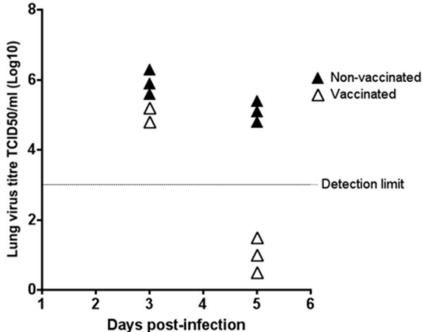
Yoichi Furuya,¹ Matthias Regner,¹ Mario Lobigs,² Aulikki Koskinen,¹ Arno Müllbacher¹ and Mohammed Alsharifi¹

¹Viral Immunology and Molecular Virology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia

²Microbiology and Infectious Diseases, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia

B: Heterosubtypic challenge with A/PR8

Heterosubtypic challenge with H1N1 (A/PR8)


I.N Vaccination	Protection
Formalin-H3N2	NO
UV-H3N2	NO
γ- H3N2	Yes

Cytotoxic T Cells Are the Predominant Players Providing Cross-Protective Immunity Induced by γ -Irradiated Influenza A Viruses^{∇}

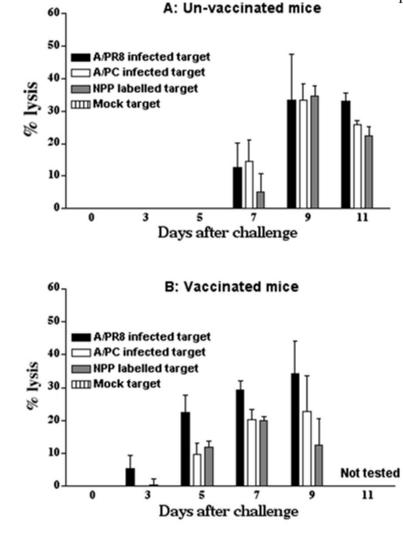
Yoichi Furuya,¹ Jennifer Chan,² Matthias Regner,¹ Mario Lobigs,³ Aulikki Koskinen,¹ Tuckweng Kok,² Jim Manavis,² Peng Li,² Arno Müllbacher,^{1*} and Mohammed Alsharifi^{1,2*}

Viral Immunology¹ and Molecular Virology,³ The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia, and Microbiology and Infectious Diseases, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia²

Vaccination with γ-H3N2

Challenged with H1N1

Early clearance of influenza virus from the lung of vaccinated animals


Cytotoxic T Cells Are the Predominant Players Providing Cross-Protective Immunity Induced by γ-Irradiated Influenza A Viruses[∇]

Yoichi Furuya,¹ Jennifer Chan,² Matthias Regner,¹ Mario Lobigs,³ Aulikki Koskinen,¹ Tuckweng Kok,² Jim Manavis,² Peng Li,² Arno Müllbacher,^{1*} and Mohammed Alsharifi^{1,2*}

Viral Immunology¹ and Molecular Virology,³ The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia, and Microbiology and Infectious Diseases, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia²

Early T-cell responses in the lung of vaccinated animals

Vol. 84, No. 9

Australian Government