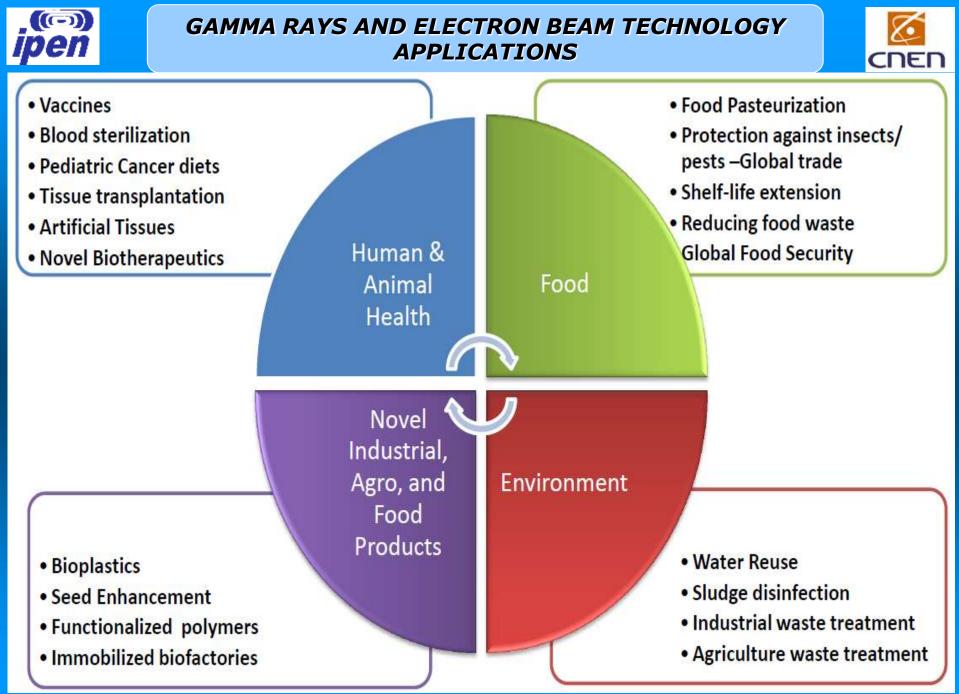


INTERNATIONAL ATOMIC ENERGY AGENCY

Scientific Forum on "Atoms in Industry – Radiation Technology for Development"


Vienna, Austria

RADIATION PROCESSING APPLICATIONS IN INDUSTRY: PROSPECTS IN LATIN AMERICA AND THE CARIBBEAN

Wilson Aparecido Parejo Calvo

Nuclear and Energy Research Institute (IPEN) National Nuclear Energy Commission - Brazil (CNEN) Radiation Technology Center

15th - 16th September, 2015

Source: Texas A&M University

Dominican Republic Puerto Rico

Titan Corporation, 10 MeV >10MeV, 15kW > EL Surbeam/Varian, 650 keV

Venezuela

Peru

 Nissin High Voltage, 500 keV Guatemala
El Salvador > 2 Titan Corporation, 10 MeV

Hait

Cuba

Ecuador

Brazil

20 Electron Beam Accelerators

(100 keV - 10 MeV)

Bolivia

Irradiation facilities in Latina America and the Caribbean

ipen

Mexico

RDI Dynamitron, 3 M

Precision Scan, 10 MeV

the Caribbean							Paraguay
Radioactive Facilities	Latina America Caribbean	Brazil	Japan	USA	China	World	
GAMMA IRRADIATORS (100 kCi - 10 MCi)	>14	>7	> 8	> 30	> 80	> 300	Chile
ELECTRON BEAM ACCELERATORS (100 keV - 10 MeV)	> 30	> 20	> 300	> 500	> 140	> 1500	

www-naweb.iaea.org/napc/iachem/home.html

CNEN

Chile 📉 Argentina

Sources: IAEA, IPEN-CNEN/SP

INDUSTRIAL ELECTRON BEAM ACCELERATORS IN LATIN AMERICA AND THE CARIBBEAN REGION

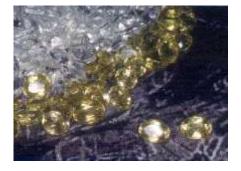
Country	Organization	City	Units	Products	Additional Information
Brazil	Nuclear and Energy Research Institute (IPEN- CNEN/SP)	Sao Paulo	2	<u>R&D</u> : wastewater treatment, polymer modification, shrink tube and film, surface curing, food irradiation	Radiation Dynamics, Inc. (RDI), JOB 188, 37.5 kW, 1.5MeV, roller bed conveyor (batch), pilot plant for wastewater treatment (30 L/min)
				<u>Commercial</u> : wire and electric cables, semiconductors, sterilization of medical and pharmaceutical devices, PE foam	RDI, JOB 307, 97.5 kW, 1.5 MeV, continuous treatment system (300 m/min)
Ecuador	Escuela Politecnica Nacional	Quito	1	<u>R&D</u> : food irradiation, wires and electric cables	ELU-6U, 6-10 MeV
Mexico	Comision Nacional de Seguridad Nuclear y Salvaguardias	Tijuana	2	Polymer modifications (plastics and rubber)	RDI Dynamitron 300/46/1220, 3MeV
	ICU Medical S.A.	Ensenada	1	Sterilization of medical devices, polymer modifications	Precision Scan, SB108, 10MeV, 15kW
	Cryovac	Mexico City	1	Fresh food packaging	Nissin High Voltage, 2SP500, 500keV
Costa Rica	BeamOne SRL	Alajuela	2	Sterilization of medical and pharmaceutical devices	Titan Corporation, 18kW, 10MeV
Dominican Republic	FENWAL International Inc. (BAXTER)	Haina	2	Sterilization of medical and pharmaceutical devices	Titan Corporation, TB-10/15, 10MeV, 1.44mA, 15kW EL Surbeam/Varian, SB-1/5, 650keV, 0.094mA
Puerto Rico	STERIS Isomedix Services	Vega Alta	1	Sterilization of medical and pharmaceutical devices	10MeV, 15kW <u>Sources</u> : IAEA, IPEN-CNEN/SP

INDUSTRIAL ELECTRON BEAM ACCELERATORS IN BRAZIL

Company	Manufacturer	Energy (keV)	Applications
IPEN-CNEN/SP and Cofibam	Radiation Dynamics, Inc.	1,500	R&D and crosslinking
Bridgestone - Firestone	Energy Scineces, Inc.	300	Crosslinking of tires
Cryovac Brasil	Cryovac	500	Crosslinking
Unipac Embalagens	Energy Scineces, Inc.	210	Curing
Itap Bemis	RPC Industries	300	Curing
Acome do Brasil	Acome/Radiation Dynamics, Inc.	550	Crosslinking of wire and electric cables
Prysmian	Radiation Dynamics Inc.	1,500	Crosslinking of wire and electric cables
Aceletrica Comercio e Representações	Titan Corporation/ EL Surebeam	10,000	Food irradiation, gemstone enhancement, radiosterilization of medical disables, cosmetics, polymer modification
CBE - Sterigenics International	Ion Beam Applications	10,000	Food irradiation, gemstone enhancement, radiosterilization of medical disables, cosmetics, polymer modification
Michelin do Brasil	Radiation Dynamics Inc.	600	Crosslinking of tires
Sumitomo Rubber do Brasil	NHV Corporation	500	Crosslinking of tires
Antilhas	Energy Scineces, Inc.	110	Curing

PALLET GAMMA IRRADIATOR

Brazilian Technology (3MCi)


TOTE BOXES GAMMA IRRADIATORS

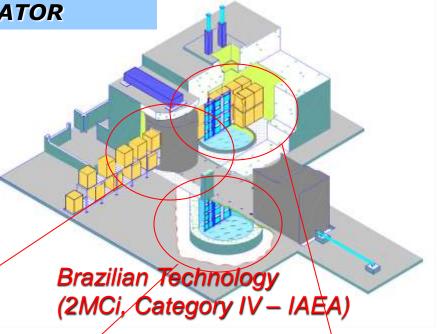
MDS Nordion Gamma Irradiators/Canada (Category IV – AIEA)

White Quartz \rightarrow Green Gold

Topaz

Blue Beryllium

Source: CBE



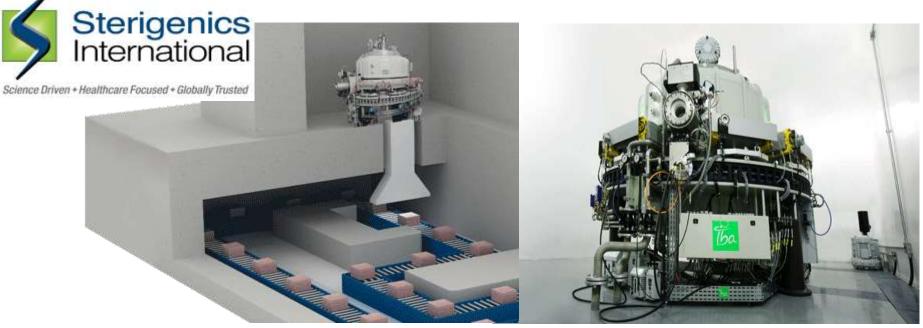
BRAZIL NUCLEAR AND ENERGY RESEARCH INSTITUTE (IPEN)

MULTIPURPOSE GAMMA IRRADIATOR

<u>DUR / Efficiency</u>: 1,33 / 11,6% (0,09g/cm³) 2,08 / 36,6% (0,49g/cm³)

Source: IPEN-CNEN/SP

PANORAMIC GAMMA IRRADIATOR



RHODOTRON TT200 (100 KW)

Sterilized Medical Devices: 135.000 m³/year

<u>Source</u>: CBE

LINEAR ACCELERATORS (18kW)

18 kW (10 MeV)

Source: ACELETRON

Trends of Gamma Rays and EB-Technology Applications in Industry

(Latin America and the Caribbean Region)

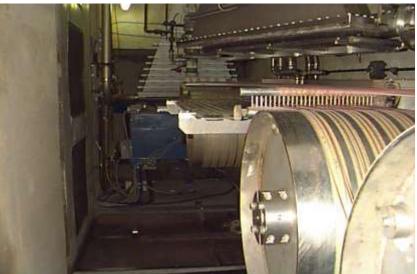
ELECTRON BEAM TECHNOLOGY APPLICATIONS

no Peroxides less energy

better properties less / no additives

no UV-Initiators less energy

better properties



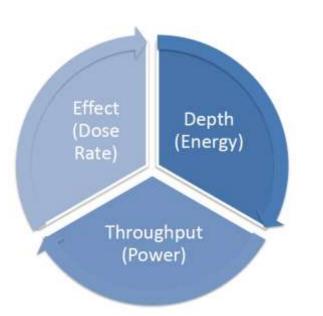
IRRADIATION OF WIRE/ELECTRIC CABLES AND POLYETHILINE FOAM

Source: IPEN-CNEN/SP

HEAT SHRINKABLE TUBES IRRADIATION

SEMICONDUCTORS IRRADIATION and POLYMER DEGRADATION

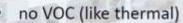
Source: IAEA and IPEN-CNEN/SP



E-BEAM PRINTING AND CURING

e⁵ efficient enabling economical energy savings environmental friendly

Integrated shield roll design


With sealed e-beam Emitter

Features

- Energy: 80kV to 180kV
- Web width: 360mm
- Web speed 90m/min at 25kGy

Applications

- Pilot / development lines
- Narrow web printing presses
- Presses for shrink sleeve labels

- no Photoinitiators (like UV)
- low substrate heating
- electrons are "colorblind"
- higher speed

Sources: RadTech and COMET Ebeam

ADVANCED PACKAGING MATERIALS

⇒ IAEA/CRP: Application of Radiation Technology in the Development of Advanced Packaging Materials for Food Products: Development of Advanced Food Packaging Materials Based on Polymer Petroleum-Derived for Pre-Packaged Irradiated Foods and Based on Biobased and Compostable Materials for Dry Food Packaging

Reinforced with filler from natural resources:

- Vegetal fibers
- Nanoparticles: bio-CaCO₃, green silica, metal, natural clay

Composite materials based on:

- Copolyester/starch blend
- Copolyester/PLA blend

Source: IAEA and IPEN-CNEN/SP

Current Production Volumes of Irradiated Food Stuffs

Region	Volumes (Metric tons)	Market Condition
USA	175,000	Flat
EU	198,000	Declining
Asia	450,000	Increasing

92% of food stuffs are treated with Cobalt-60. Only 8% is represented by E-beam

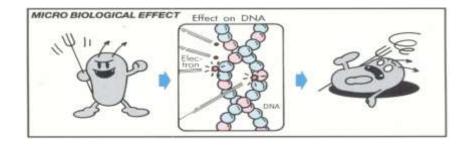
Latina America Caribbean > 100,000 tons

Food industry are looking for EB or X-ray machines:

- Lower capital cost
- Reliable
- Simple enough to operate
- Lower cost of operation
- Compact enough to integrate in existing
- Production in-line or a packing house space

Spices

Medicinal herbs


<u>Source</u>: L3

STERILIZATION OF MEDICAL, PHARMACEUTICAL AND BIOLOGICAL PRODUCTS

World: ~ 50% (> 1,500 EBA)

	STERILIZATION PROCESSES								
NECESSARY CONTROLS	Gases	Liquids	Vapor	Filtration	Radiation				
Time									
Temperature									
Package									
Pressure									
Humidity									
Concentration									
pH									

Routine operations (semi-industrial scale)

Disinfestation and disinfection of cultural objects (books, furniture, sculptures and paintings)

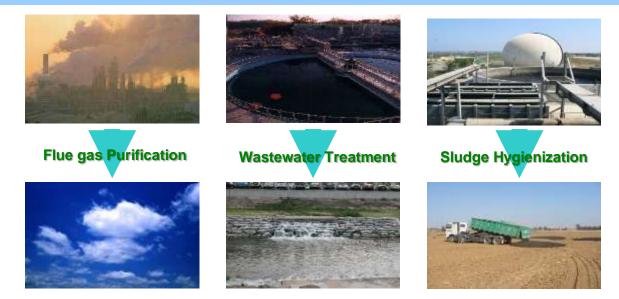
RADIATION PROCESSING OF CULTURAL HERITAGE

Extraordinary cultural objects irradiations

Source: IPEN-CNEN/SP

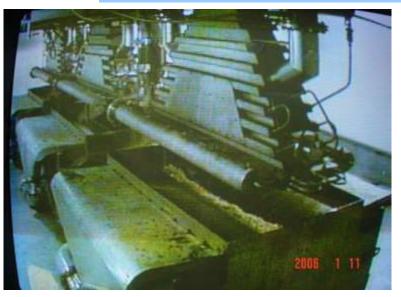
RADIATION PROCESSING OF CULTURAL HERITAGE

Floods and natural disasters recovery



Source: IPEN-CNEN/SP

BEAM TECHNOLOGY FOR POLLUTION CONTROL

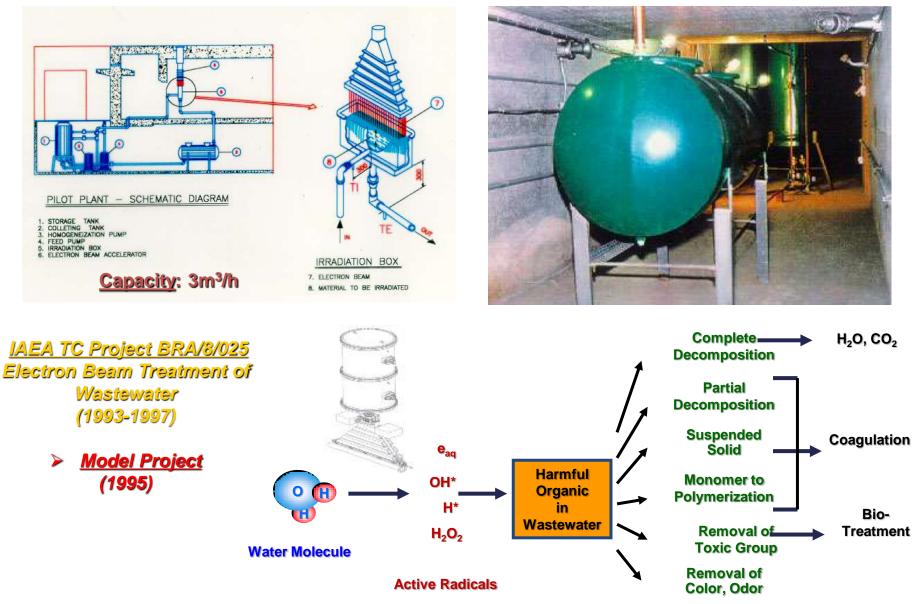

	Flue Gas Purification	Wastewater Treatment	Sludge Hygenization
Contaminants to clear	SO ₂ , NO _x , (Dioxin)	Complex COD, BOD, other	Disinfection of microorganism
Cleaning process	Simple	Limitation in depth Combined with others	Limitation in depth Handling system
Competition with other processes	Superiority proved in commercial plant	Complicate to analyze	Many advantages over chemical processes
Technology	Fully developed	Laboratory to pilot scale	Laboratory to pilot scale
Economies	Proved through pilot & commercial plant	Complicate to analyze	Complicate to analyze
By-product	Useful for fertilizer	Wastewater (less toxic) Reuse	Useful for fertilizer or soil treatment

ource: EB-Tech

WASTEWATER TREATMENT PLANT BY E-BEAM Dyeing Industrial Complex/KOREA (10,000 m³/day)

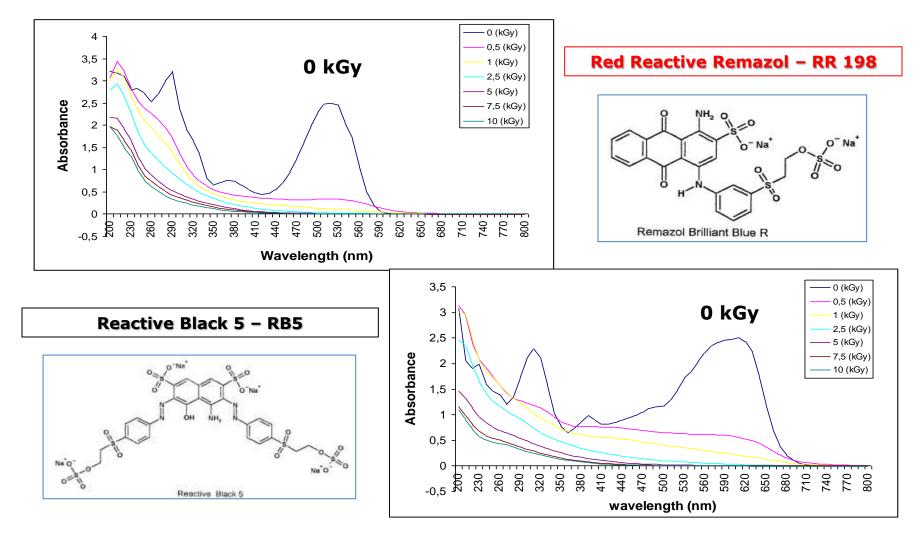
⇒ Electron Beam: 1MeV, 400kW

E-BEAM TREATMENT FOR WASTEWATER MAKING THE TEXTILE INDUSTRY CLEANER


www.iaea.org/newscenter/multimedia/photoes says/e-beam-treatment-wastewater

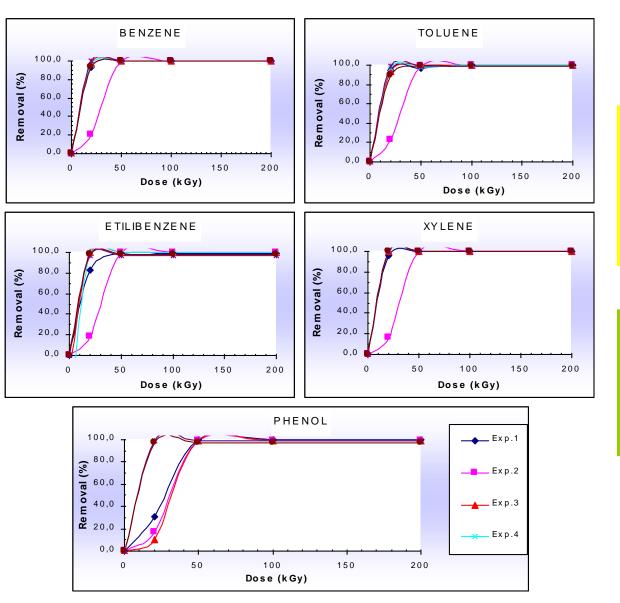
Source: IAEA and EB-Tech

WASTEWATER TREATMENT BY ELECTRON BEAM ACCELERATOR



Source: IPEN-CNEN/SP and EB-Tech

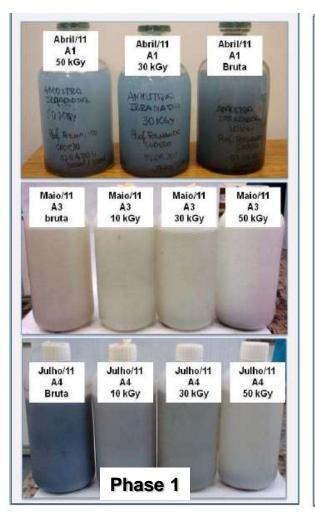
⇒ IAEA/CRP: Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants



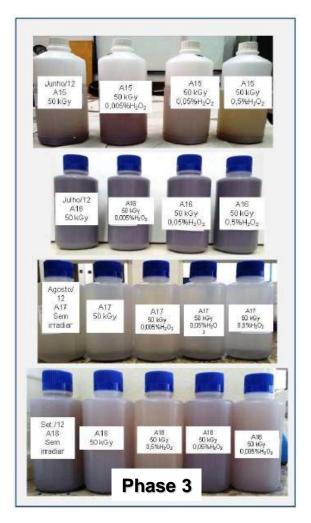
Source: IAEA and IPEN-CNEN/SP

IPEN'S STUDIES FOR TREATMENT OF EFFLUENT FROM PETROLEUM PRODUCTION UNITS

Removal of Organic Compounds (EB)



Source: IPEN-CNEN/SP



TREATMENT OF INDUSTRIAL WASTEWATER FROM PAINT INDUSTRY BY ELECTRON BEAM IRRADIATION

Efficiency of organic compound and color removal by electron beam irradiation

Source: IPEN-CNEN/SP

Laboratorial scale experiments (1~50m³/day)

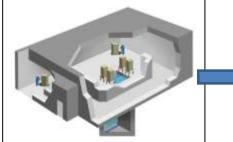
Laboratorial scale experiments (1~10,000Nm³/h)

Pilot scale experiments (500~1,000m³/day)

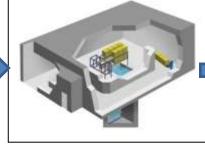
- Cost
- Space
- Operation & Maintenance, other

Industrial scale wastewater plant (10,000m³/day)

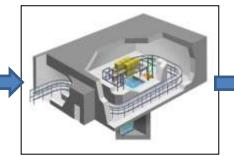
Industrial scale EBFGT Plant (~600,000Nm³/h) <u>Source</u>: EB-Tech

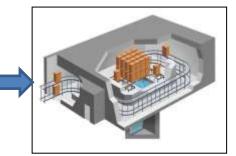


Final Remarks ✓ GammaFit Irradiator ✓ Rhodotron Duo (EB, X-ray) Compact Installation (MB5000) ✓ EB Engine, LAB System Mobiles E-Beam Accelerators

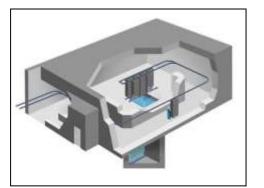


GAMMAFIT IRRADIATOR

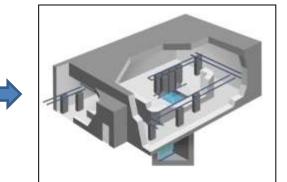


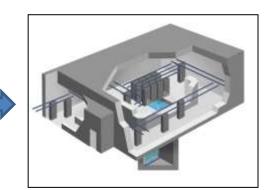


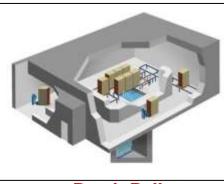
R&D Small Scale

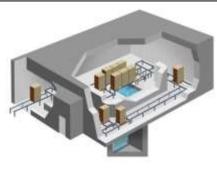


Two-Pass Batch Tote



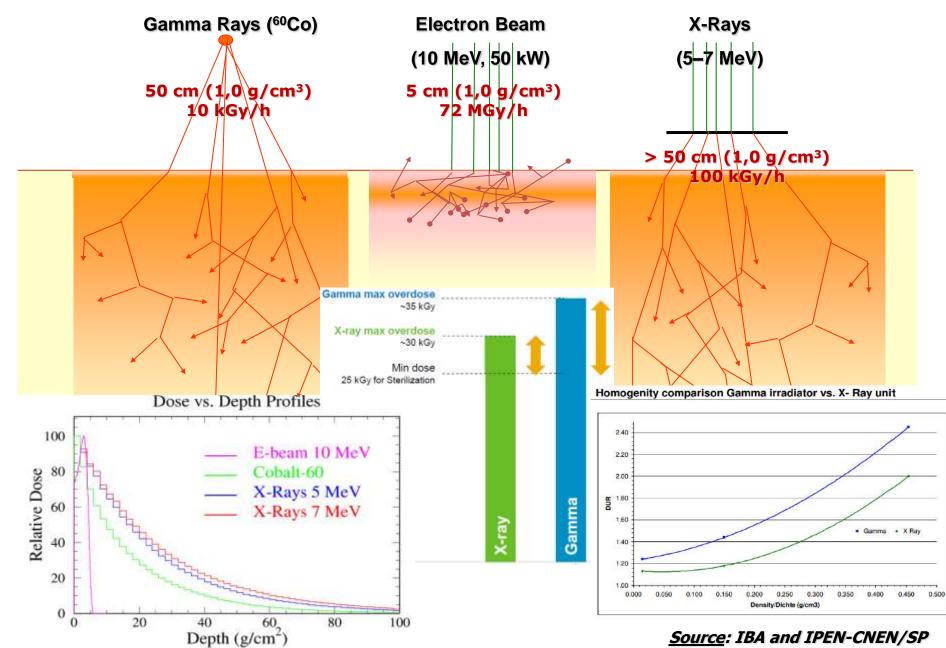

Two-Pass Automatic Tote Four-Pass Automatic Tote


Two-Pass Batch Carrier


Two-Pass Automatic Carrier

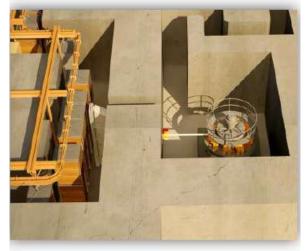
Four-Pass Automatic Carrier

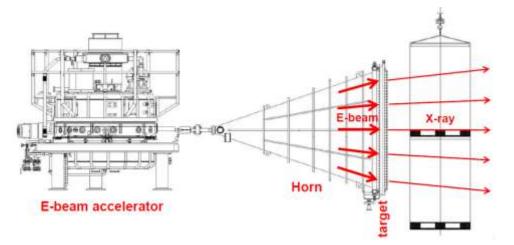
Batch Pallet


Automatic Pallet

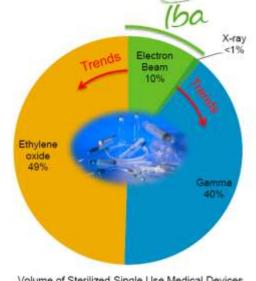
Source: NORDION

GAMMA RAYS, ELECTRON BEAM AND X-RAYS




X-RAY CONFIGURATIONS

eXelis X-ray 5 or 7 MeV X-ray Pallets


X-ray lateral irradiation

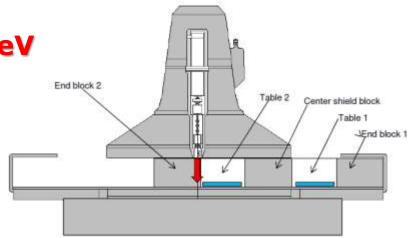
Rhodotron Duo 10 MeV E-beam + 5 or 7 MeV X-ray Boxes

E-beam and X-ray top irradiation

E-beam/X-ray market is growing 1.5 to 2 times faster compared with the global sterilization market

Volume of Sterilized Single Use Medical Devices

<u>Source</u>: IBA



COMPACT INSTALLATION – MB5000

Source: MEVEX

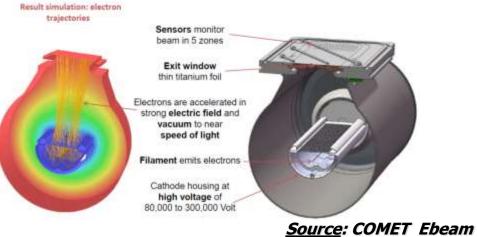
E-BEAM ENGINE AND LAB SYSTEM

200 keV ebeam engine

Product	Energy	Window	Power
EBA-200/400	200 keV	400 mm 270mm	4.5 kW

200 keV EBLab System

N_2 / Air atmosphere



window frame with Ti foil

> window support

ceramic insulator

cathode housing

- Hermetically sealed by brazing and welding
- Can be refurbished by milling out frame with window foil and welding in new one

MOBILE E-BEAM IN FLUE GAS PURIFICATION FROM OIL-REFINERY IN SAUDI ARABIA

Source: EB-Tech

MOBILE ELECTRON BEAM ACCELERATOR

11

- ----

Source: EB-Tech

Treatment Costs

Effluent	Dose	Amount	Power	Capital	*Variable cost	Cost/m ³ of
	(kGy)	(m³/day)	(kW)	cost (Million US\$)	**(Variable and fixed costs)	effluent treated
				000	(Million US\$)	(US\$)
Removal of geosmine- GEO and methilisoborneol-MIB from	1	1,000	20	1.5	0.20	0.60
drinking water					(0.38)	(1.14)
Removal of industrial					0.20	1.20
textile dyeing from wastewater	2	500	20	1.5		
					(0.38)	(2.28)
Elimination of coliforms from raw sewage,	3	340	20	1.5	0.20	1.77
secondary and chlorinated effluents					(0.38)	(3.36)
Removal of organic compounds from petroleum production	20	50	20	1.5	0.20	12.0
water					(0.38)	(22.8)
Removal of PCB from					0.20	30.1
transformers oils	50	20	20	1,5		
					(0.38)	(57.1)

* Variable cost only (maintenance, electricity and labor)

** Both variable and fixed costs (depreciation, bank interest and management)

THANK YOU VERY MUCH FOR YOUR ATTENTION !

ARCAL CXLVI (2016-2019) - Creating Expertise in the Use of Radiation Technology for Improving Industrial Performance, Developing New Materials and Products, and Reducing the Environmental Impact of the Industry

Source: Russian weather satellite Elektro-L