


Concept and Script: Łukasz Koszuk

Illustrations: Art of Colors Team:

Krzysztof Kałucki Sebastian Szpakowski

Marta Danecka Milena Molenda

Edition I, 2016 (in Polish) Edition II, 2021 (in Polish) Edition III, 2024 (in Polish)

Edition I, 2025 (in English)

Publisher: FORUM ATOMOWE Foundation Złota St. 7/18 00-019 Warsaw, Poland www.forumatomowe.org fundacja@forumatomowe.org

ISBN: 978-83-960557-7-4 (English edition)

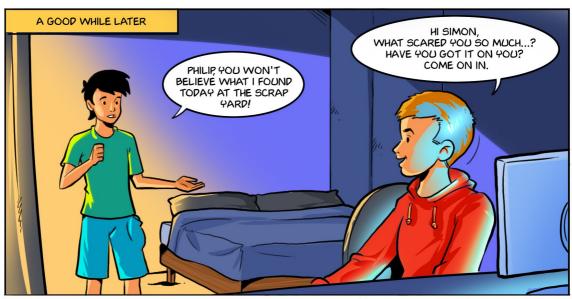
The comic book was created in cooperation with Polskie Elektrownie Jądrowe sp. z o. o.

**Polskie Elektrownie Jądrowe sp. z o. o.** is responsible for the preparation and construction of the first Polish nuclear power plant.

All Rights Reserved. Unauthorized distribution of all or part of this publication in any form is prohibited. Making copies by photocopying, photographic methods, as well as copying the book on film, magnetic or other media will result in violation of the copyright of this publication.

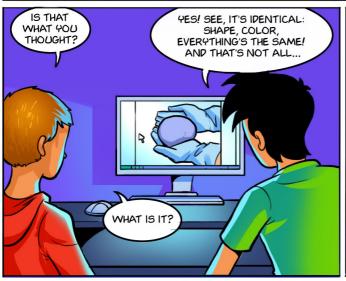
Copyright © 2025 FORUM ATOMOWE Foundation, Polskie Elektrownie Jądrowe sp. z o. o.



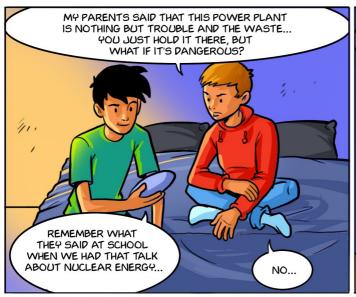










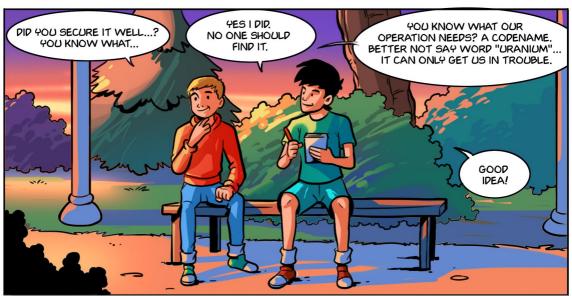






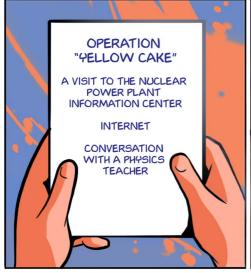




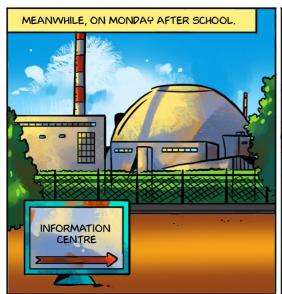








PUK! PUK! = KNOCK! KNOCK!





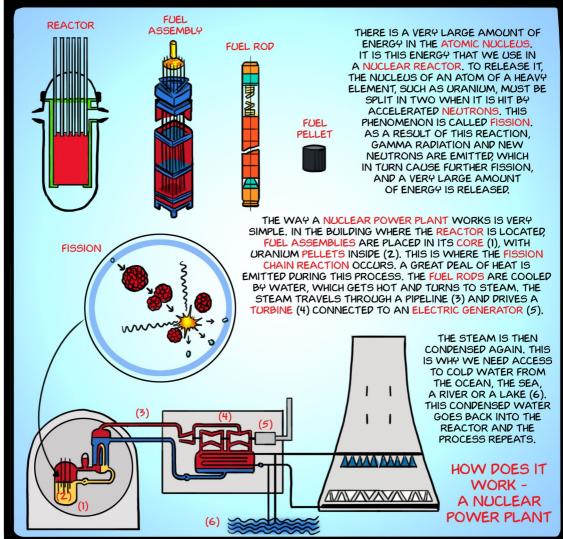


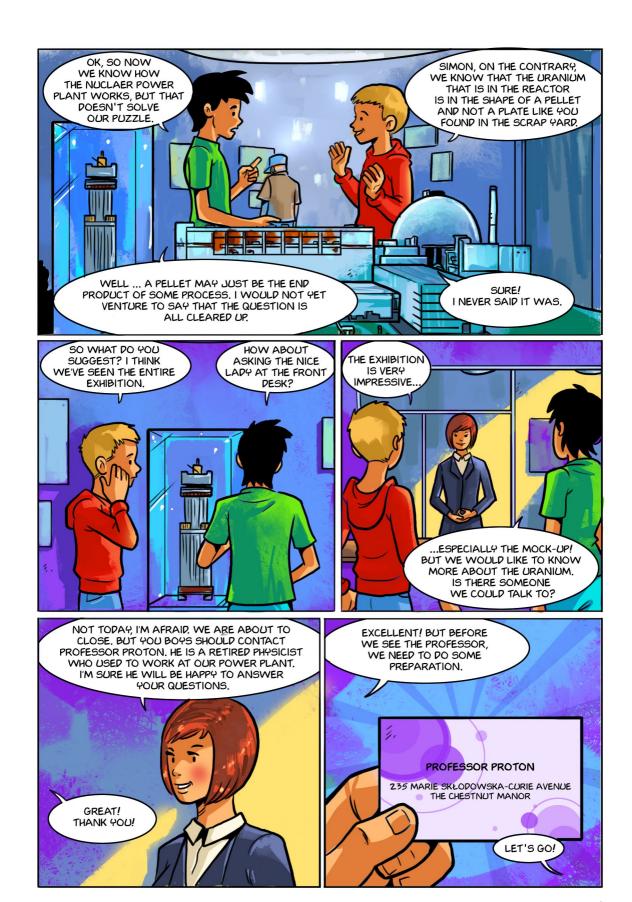























A WHILE LATER AT SIMON'S

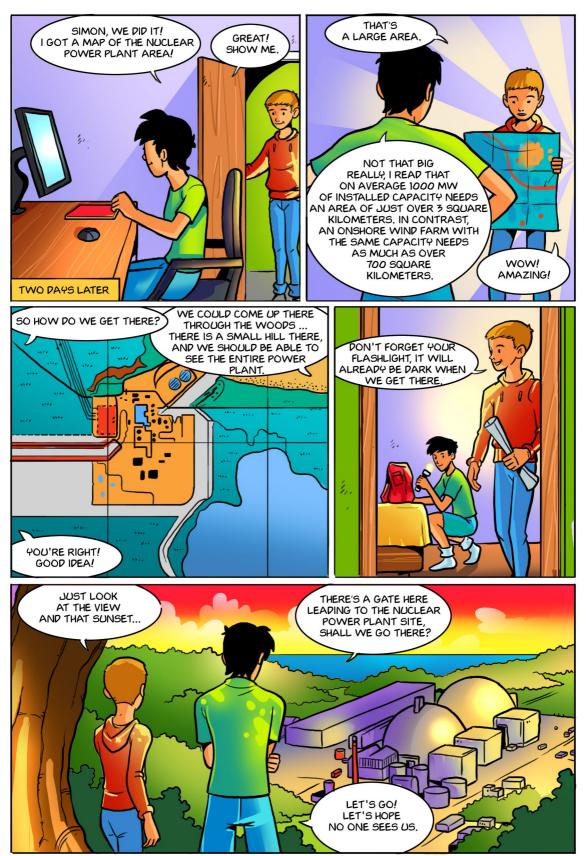
### WHERE DO WE GET URANIUM?

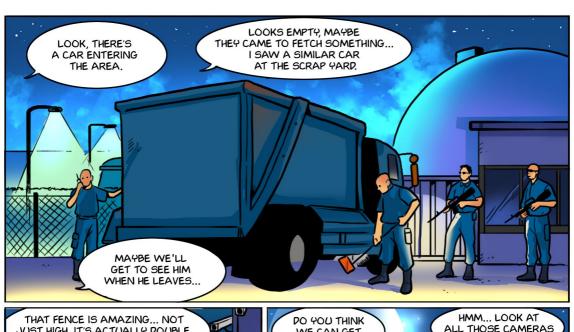
URANIUM, LIKE HARP COAL, IS MINEP FROM UNPERGROUNP TUNNELS (CALLERIES) OR, WHEN IT IS NOT AS PEEP UNPERGROUND, LIKE LIGNITE, THE TOP LAYER OF EARTH IS REMOVEP AND URANIUM IS BROUGHT UP FROM THE PIT. ONE TON OF ORE CONTAINS ABOUT I KILOGRAM OF URANIUM.

HOWEVER, URANIUM IN THIS FORM IS NOT USEFUL
FOR THE PLANT. THE URANIUM MINE IS JUST
THE BEGINNING OF THE JOURNEY.
THE ORE IS PROCESSED AND GOES THROUGH
VARIOUS TRANSFORMATIONS
BEFORE IT IS USED TO MAKE FUEL,
WHICH THEN NEEDS TO BE TRANSPORTED
TO THE NUCLEAR REACTOR.



#### COOL!


WE USED TO HAVE
URANIUM MINES
HERE IN POLAND.
TWO OF THEM,
NOW CLOSED
- IN KLETNO AND
KOWARY - ARE OPEN
TO VISITORS!




THE INITIAL STAGE IN PRODUCTION OF NUCLEAR FUEL IS THE "YELLOW CAKE".

AFTER MINING, URANIUM ORE IS CRUSHER, GROUND AND PURIFIED WITH CHEMICAL SOLUTIONS, THEN WASHER, FILTERED AND SINTERED IN FURNACES. THE RESULTING "YELLOW CAKE" CONCENTRATE THEN UNDERGOES FURTHER CHEMICAL PROCESSING.

















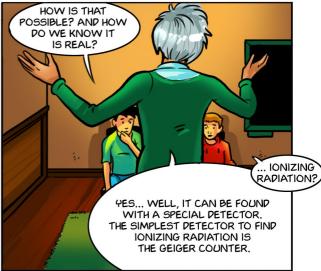




### TO BREAK INTO THE POWER PLANT!

PESIGNERS OF A NUCLEAR POWER PLANT PUT SAFEGUARDS IN PLACE AGAINST A POSSIBLE ATTACK, FOR EXAMPLE AN ARMORED VEHICLE FILLED WITH EXPLOSIVES TO PESTROY PHYSICAL BARRIERS, OR A SIMILAR ATTACK FROM THE AIR OR SEA.

#### THE NPP IS SECURED WITH:


- PHYSICAL BARRIERS,
- A SPECIAL FENCE, ILLUMINATED AT NIGHT.
  THE NPP AREA MUST BE UNDER CONSTANT
  CONTROL OF OBSERVATION AND
  RECORDING EQUIPMENT,
- ALARM SYSTEMS, WHICH MUST BE EQUIPPED WITH AN INDEPENDENT POWER SUPPLY,
- RESTRICTIONS ON ACCESS TO THE NPP SITE (POSSIBLE ONLY FOR THOSE WITH SPECIAL ZONAL AUTHORIZATION - AN INDIVIDUAL PERMIT IS REQUIRED FOR EACH PART OF THE CLOSED AREA).
- CONTROL OF OBJECTS BROUGHT IN AND OUT USING, FOR EXAMPLE, METAL DETECTORS, RAPIATION DETECTORS,
- ACCESS TO PROTECTED AREAS RESTRICTED TO SELECTED PERSONNEL ONLY.
- RAPIATION PETECTORS, MOTION PETECTORS AND OTHER SENSORS THAT ACTIVATE THE CENTRAL ALARM SYSTEM,
- 24-HOUR SECURITY OF THE FACILITY, THE SECURITY SERVICE SHOULD BE ARMED AND PREPARED FOR RAPID INTERVENTION.
- MINIMUM NUMBER OF ENTRANCES TO THE PROTECTED AREA.

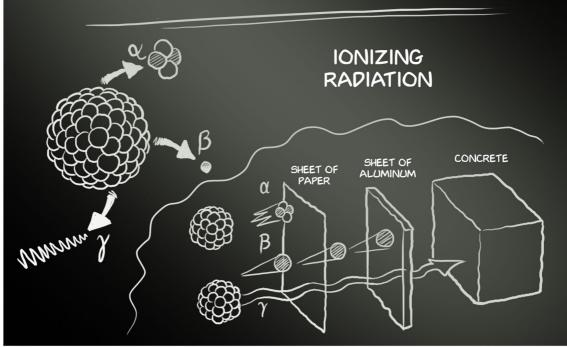











check the dictionary at the end of the book →radioactive

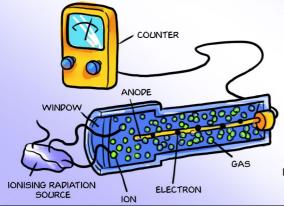
THERE ARE MANY TYPES OF RAPIATION WE ENCOUNTER EVERY PAY.
THERE ARE RAPIO WAVES, WHICH ALLOW US TO WATCH TY, MICROWAVES THAT YOU USE IN YOUR OVENS TO HEAT FOOD, OR VISIBLE LIGHT, SENT OUT BY LIGHT BULBS.

A SPECIAL TYPE OF RAPIATION IS CALLEP IONIZING RAPIATION. IT IS FORMED IN ATOMIC NUCLEI WHEN AN ATOM OF ONE ELEMENT IS TRANSFORMED INTO ANOTHER. THIS PHENOMENON IS CALLED RAPIOACTIVITY.

THE THREE MOST COMMON TYPES OF IONIZING RAPIATION HAVE SPECIAL NAMES: ALPHA (a) - I.E. THE NUCLEUS OF THE HELIUM ATOM, IT CAN'T FLY TOO FAR EVEN IN AIR, AND IN ORDER TO PROTECT OURSELVES FROM IT ALL WE NEED IS A SHEET OF PAPER, BETA (B) - I.E. ELECTRONS, IN THIS CASE WE CAN USE A THIN SHEET OF ALUMINUM AS A SHIELD, AND GAMMA (y) - WHICH EASILY PENETRATES MOST MATERIALS, SO IT REQUIRES SPECIAL SHIELDING, SUCH AS A THICK LAYER OF CONCRETE.

IONIZING RAPIATION ACCOMPANIES US EVERY PAY, IN FACT, EVERYTHING AROUND US RAPIATES. PLANTS AND ANIMALS, FRUITS AND VEGETABLES, THE SUN, THE EARTH, OUR HOMES, EVEN WE OURSELVES. HUMANS HAVE BEEN LIVING SURROUNDED BY RAPIATION FOR CENTURIES, AND THEY ARE WELL PREPARED FOR IT.












#### HOW A GEIGER COUNTER WORKS




THE GEIGER COUNTER IS A FAIRLY
SIMPLE PEVICE. IT CONSISTS OF A METAL
TUBE ENCLOSED BY INSULATORS AT
BOTH ENDS, WITH A THIN TUNGSTEN WIRE INSIDE.
THE TUBE IS FILLED WITH GAS (SUCH AS AIR,
ARGON OR NEON) AT LOW PRESSURE
WITH APPITIONAL VAPORS OF ORGANIC
COMPOUNDS, SUCH AS ALCOHOL.

A HIGH VOLTAGE OF SEVERAL HUNDRED VOLTS
IS APPLIED BETWEEN THE WIRE AND THE TUBE.
IF IONIZING RAPIATION ENTERS THE TUBE,
IT CAUSES IONIZATION OF THE GAS (ELECTRONS
ARE KNOCKED OUT OF THE ATOMS OF THE GAS).
THE GENERATED CASCADE OF CHARGE
(ELECTRONS) REACHES THE WIRE AND
DISCHARGES A STRONG ELECTRIC PULSE,
WHICH IS THEN AMPLIFIED AND RECORDED.
THE NUMBER OF RECORDED PULSES
IS PROPORTIONAL TO THE NUMBER OF PARTICLES
THAT ENTERED THE COUNTER.









O.12 MICROSIEVERTS PER HOUR. SO WHAT POES THAT MEAN? SO IS OUR PIECE OF METAL RAPIOACTIVE?

I REAP IN ONE OF THE BOOKS
WE BORROWED THAT A SIEVERT IS A UNIT OF
EFFECTIVE POSE OF IONIZING RAPIATION,
A MICRO, OR MILLIONTH OF A SIEVERT.



OK, SO THE COUNTER SHOWS
WHAT POSE WE GET IN ONE HOUR...
HMM.... BUT WHAT POES THAT
NUMBER TELL US?

LET ME CHECK ONLINE.

### IONIZING RAPIATION IS PRESENT EVERYWHERE!

WHEN WE TURN ON THE GEIGER COUNTER, EVEN THOUGH IT IS NOT FACING THE MARKEP RAPIOACTIVE SOURCE, IT STILL "TICKS". IF THE METER CAN STILL PETECT IONIZING RAPIATION, WHERE POES IT COME FROM? IT COMES MAINLY FROM SPACE, FROM NATURAL RAPIONUCLIPES IN THE AIR (PRIMARILY THE PECAY PROPUCTS OF RAPIOACTIVE RAPON) AND, FINALLY, FROM NATURAL RAPIOACTIVE MATERIALS PRESENT IN THE EARTH'S CRUST, IN OUR BOPIES OR EVEN IN THE HOUSING OF THE COUNTER. THIS RAPIATION IS CALLED "NATURAL".

WE ALSO RECEIVE IONIZING RAPIATION, WHICH IS THE RESULT OF HUMAN ACTIVITY - WE CALL IT "ARTIFICIAL" RAPIATION. SUCH RAPIATION INCLUPES X-RAYS, COMMONLY USED IN MEDICAL PIAGNOSTICS.

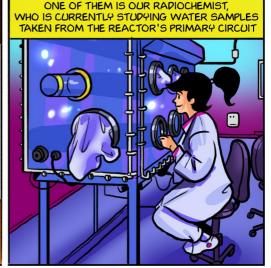
COSMIC RAPIATION REACHING US MAINLY FROM SOIL, ROCKS, THE SUN CONSTRUCTION HUMAN BODY MATERIALS RAPON - A NATURAL MEDICINE -RADIOACTIVE GAS TESTING AND THAT ENTERS TREATMENT OUR HOMES OF DISEASES FROM THE SOIL IN POLAND IN 2014, THE VALUE OF NATURAL GAMMA RADIATION POSE ABSORBED PER HOUR RANGED FROM 0.067 TO 0.133 MICROSIEVERTS PER HOUR

THAT'S PISAPPOINTING...
OUR RESULT IS WITHIN THE LIMITS
RECEIVED FOR NATURAL
IONIZING RAPIATION.



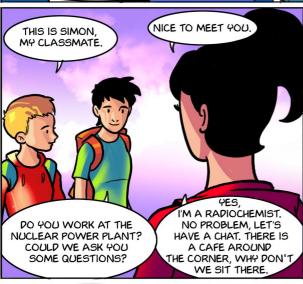
WAIT, BUT URANIUM EMITS
ALPHA RAPIATION, WHICH THIS
METER CAN'T MEASURE UNLESS
IT WOULD HAVE VERY HIGH ENERGY,
THAT'S WHAT I READ
IN THE MANUAL!

SO WE'RE NOT
PONE WITH OUR
INVESTIGATION!
THIS COULP STILL BE
URANIUM!


WITH AN ANNUAL AVERAGE OF 0.095 MICROSIEVERTS PER HOUR



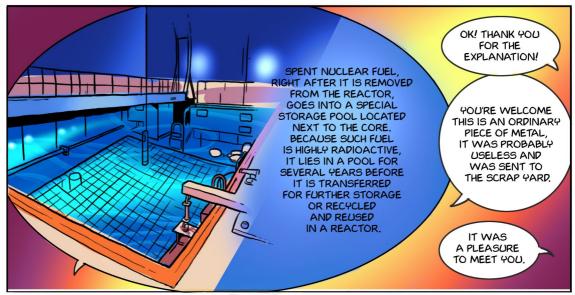


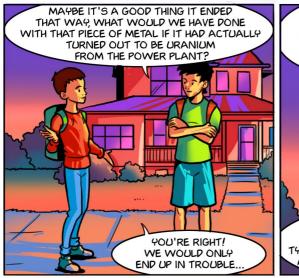


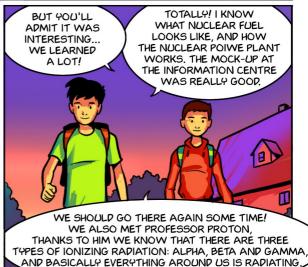

A TYPICAL NUCLEAR POWER PLANT OF 1000 MWE CAPACITY EMPLOYS AROUND 800 PEOPLE. AMONG THEM ARE PHYSICISTS HEMISTS AND NUCLEAR ENGINEERS, MECHANICAL AND ELECTRICAL ENGINEERS, REACTOR CONTROL OPERATORS. RADIATION PROTECTION AND RADIOACTIVE WASTE MANAGEMENT TECHNICIANS IT SPECIALISTS, ADMINISTRATIVE AND SECURITY PERSONNEL, FIREFIGHTERS. YOU TOO, DEAR READER, MAY ONE DAY WORK AT A NUCLEAR POWER PLANT?



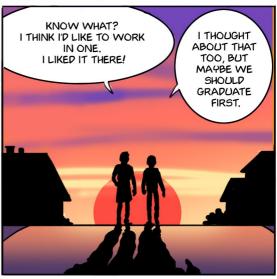






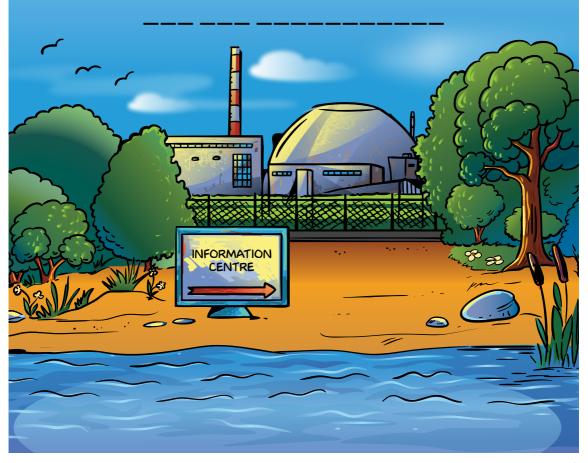












## Learn a secret about nuclear power

Write the first letter of the first line in the blank space in the box at the bottom. Then discover the rule and choose the appropriate next letter, writing it in the blanks.

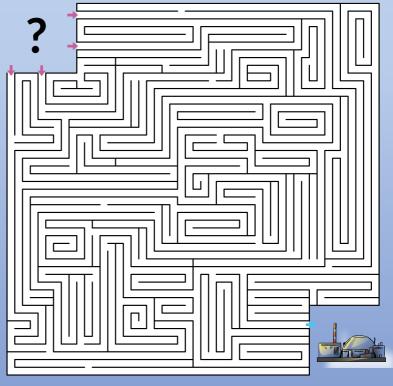
This will help you uncover a secret.

NEUHICODLKEIEABREREZNO PETRASGMYAKINSILCALESE VAWJNTAORNADASSIATHFA EMEFLOWIRATIOHAENSEJNY EVQIFSRIOASNIBMOERANST

N\_\_\_\_\_



# Check if you are an expert in nuclear energy?

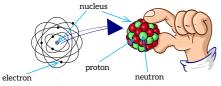

Complete the sentences with the missing words and enter them in the crossword puzzle fields.

|     |                                               |    |            |         |     |               | _          |        |                                 |                 |          |
|-----|-----------------------------------------------|----|------------|---------|-----|---------------|------------|--------|---------------------------------|-----------------|----------|
| 1.  | radiation is commonly used in                 |    |            | 1       |     |               |            |        |                                 |                 |          |
|     | medical diagnostics (like looking at bones).  |    |            | 1       |     |               |            |        |                                 |                 |          |
| 2.  | In a nuclear, a controlled fission            |    | <u>,</u> [ |         |     |               |            |        |                                 |                 |          |
|     | chain reaction takes place.                   |    | 2          |         |     |               |            |        |                                 |                 |          |
| 3.  | Fuel containing uranium pellets               |    | ا ر        |         |     |               |            |        |                                 |                 |          |
|     | are placed in the reactor core.               |    | 3          |         |     |               |            |        |                                 |                 |          |
| 4.  | The process of splitting a heavy atomic       |    |            |         |     |               |            |        |                                 |                 |          |
|     | nucleus (like uranium) into smaller parts 4   |    |            |         |     |               |            |        |                                 |                 |          |
|     | is called nuclear                             |    |            |         |     |               |            |        |                                 |                 |          |
| 5.  | radiation consists of Helium atom             |    |            |         | 5   |               |            |        |                                 |                 |          |
|     | nuclei (two protons and two neutrons).        | ſ  | $\neg$     |         |     |               |            |        |                                 |                 |          |
| 6.  | To start fission, the nucleus of a heavy      | 6  |            |         |     |               |            |        |                                 |                 |          |
|     | atom is often hit by an accelerated           | L  | $\dashv$   |         |     |               |            |        |                                 |                 |          |
|     |                                               |    | 7          |         |     |               |            |        |                                 |                 |          |
| 7.  | A popular handheld device used to detect      |    | ŀ          |         |     |               |            |        |                                 |                 |          |
|     | ionizing radiation is the counter.            |    | 8          |         |     |               |            |        |                                 |                 |          |
| 8.  | A particle found in the nucleus of an atom    | ſ  | $\dashv$   |         |     |               |            |        |                                 |                 |          |
|     | that has a positive electric charge is called | 9  |            |         |     |               |            |        |                                 |                 |          |
|     | a                                             |    |            |         |     |               |            |        |                                 |                 |          |
| 9.  | is a heavy, radioactive element               |    |            |         |     |               |            |        |                                 |                 |          |
|     | commonly used as fuel in nuclear power        |    |            |         |     |               |            |        |                                 | ,               |          |
|     | plants.                                       |    |            |         |     |               |            |        |                                 | //              | 1-       |
|     |                                               |    |            |         |     |               |            |        | -                               | -               |          |
|     |                                               |    | _          |         |     |               |            |        | 1                               | -    <i> </i> - |          |
|     | =  -                                          |    | _          | _       | _   | ${\mathbb I}$ |            | Ł      | 1                               |                 | $\sim$   |
| ,   |                                               | 1  | 7          |         |     | 7             |            |        | -                               |                 | 1        |
|     |                                               | P  | 74         |         |     | 1             |            |        | V                               |                 |          |
| \   |                                               | V  |            | ــٰـــا |     |               | 3          | ,      | 1                               | 71              |          |
| Α,  |                                               |    | 7          |         | 1   | 一             | \          |        | 7                               | $\  \  \ $      |          |
|     |                                               | H  | ΄.         |         |     |               |            | $\vee$ | 2                               |                 |          |
| _   |                                               |    | Z          |         | L / |               |            | √°/∧   | ١,                              |                 |          |
|     |                                               | +1 | 1          | M       |     | <b>→</b>      |            |        | $\parallel \parallel \parallel$ |                 |          |
|     |                                               |    |            |         | 7   |               |            |        |                                 | \ \\\           |          |
| CE  |                                               |    |            | U       |     | 1 1           |            |        | - ///                           | <b>     </b>    | <b>\</b> |
| ハゴ  | N THIE                                        |    |            | 1       |     |               | <b>=</b> / |        | "                               |                 |          |
| \ \ |                                               | 3  | 7          |         |     |               |            | \      |                                 | ۳               | \\/      |
|     |                                               |    |            | 1       |     |               |            |        |                                 |                 |          |
|     |                                               |    |            |         | , . |               |            |        |                                 |                 |          |
|     |                                               | TV | 1          |         |     |               |            |        |                                 |                 | Y        |
| '   |                                               | 1  |            |         |     |               |            | \      |                                 |                 |          |
|     |                                               |    |            |         |     |               |            |        |                                 | $I_{n}I$        |          |
|     | 10/19/0                                       |    |            |         |     |               | V          | / Y    |                                 |                 |          |
|     |                                               |    |            |         |     |               |            |        |                                 |                 |          |
|     |                                               |    |            |         |     |               |            |        |                                 |                 |          |


# More than 440 nuclear reactors are operating in 30 countries!



Help Professor Proton reach his workplace - the nuclear power plant.




Want to know more?
Check out our
illustrated book: "Journey to
the Center of the Atom"!

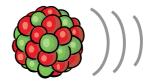


#### Glossary of terms used in the comic book

atomic nucleus (nuclide) — is located in the center of each atom, concentrating virtually all of its mass. It is made up of neutrons and protons, and depending on the number of neutrons and protons in the atomic nucleus, we have different elements, such as hydrogen, oxygen, carbon or uranium.



electric current — the flow of electrons through a conductor, such as a wire. When many electrons flow in a unit of time, we call that high current. The flow of charges is made possible by the fact that both ends of the wire are applied an electric voltage measured in volts.


electric megawatt ( $MW_E$ ) — for a large energy source, such as a power plant, we use a unit of power a million times larger than a watt (W), or megawatts (one million watts), marked as - MW. In a nuclear power plant, the energy released in the fission process is converted into heat. We are able to convert some of this thermal energy into electricity, and the power of the facility that performs this process is given in units of  $MW_E$  (megawatts electric).

**element** — everything around us is composed of the simplest materials, or elements. You can't change one element into another by simple methods. In everyday life we encounter elements such as gold, copper, iron, aluminum and many others.

**ionization** — the process of knocking one or more electrons out of an atom. Atoms which lost electrons are called ions.

power — if we consume energy in a certain period of time, the rate of this process is called power. If we transfer a lot of energy in a very short time, we say that the energy source has a lot of power. The unit of power is the watt (W), and every appliance or bulb includes a notice how much power it has (consumes or emits energy). A typical household incandescent bulb is 40-100 watts.

radioactive — atoms of some elements release energy by emitting various types of radiation. An atom like that (or the substance or material in which such atoms are found) is called radioactive.



**radiochemist** — a chemist who specializes in the study of radioactive substances.

**radionuclide** — an atomic nucleus (nuclide) that undergoes radioactive transformations, emitting ionizing radiation in the process.

**radon** — a radioactive gas that does not react chemically with anything and is heavier than air, so it accumulates in basements, tunnels or mines.

**sivert** (Sv), milisievert (mSv) — a unit used to determine the effects of ionizing radiation on the human body.

uranium — an element (silvery-white metal) naturally occurring on Earth, which, like coal, is mined. It was discovered by a German chemist named Martin Klaproth in 1789. Uranium is used as fuel in nuclear power.



НЕГЬ РВОF. РВОТОИ ТЕГР РІС 1. XRAY 2. REACTOR 3. RODS 4. FISSION 5. ALPHA 6. NEUTRON 5. CEIGER 8. PROTON 9. URANIUM

CKOSSMOKD

E M E L H I C O D F K E I E P B B E B E E Z N O

D E T B P S G W A P K I N S I F C P F E S E

A P N N N T P O B N P D P S S I P T H F P

A P N I M T P O B N P D P S S I P T H F P

A P N I M T P O B N P D P S S I P T H F P

THE SECRET OF NUCLEAR ENERGY

SOLUTIONS



Polskie Elektrownie Jądrowe sp. z o.o. is a company responsible, among other things, for the development of the investment process, and acting as the investor in the project to build nuclear power plants with a total capacity of 6 to 9 GWe based on safe, proven, large-scale, generation III(+) pressurized water reactors (PWR), and potentially, their future operation.

The Company also supports the government administration in activities aimed at the execution of the Polish Nuclear Power Program, and the performance of the Intergovernmental Agreement between the Republic of Poland and the United States of America on cooperation towards the development of a civil nuclear power program and the civil nuclear power sector in the Republic of Poland.

More information: www.ppej.pl



The FORUM ATOMOWE Foundation was established with the idea of broadly understood informational and educational activities in the field of peaceful use of nuclear energy, promotion of physics and related sciences, as well as the idea of developing nuclear energy in Poland.

The FORUM ATOMOWE Foundation is a team of active and ambitious people, specialists in their fields, including nuclear physics, radiological protection, energy.

The Foundation run several interesting and valuable projects - the largest - "Atomic Bus - Mobile Laboratory", as well as "Meetings with Atomic Energy", "School Radon Map of Poland", knowledge competitions for primary and

secondary school students, the popular science portal energiajadrowa.pl and the nuclear energy knowledge portal nukleo.pl.

The Foundation's volunteers remain convinced that only through reliable, comprehensive information and education, as well as broad direct participation of society in public debates, it is possible to obtain full support for the construction of a nuclear power plant in Poland and in other countries that take up a similar challenge.

More information: www.forumatomowe.org

Contact: fundacja@forumatomowe.org







