

Ocean Acidification Coordination Centre

Basic Training Course on Ocean Acidification

9 - 13 September 2024

EVT2205463

hosted by

United Methodist University (UMU)

From chemistry to biology

On the menu today

- What part of the carbonate chemistry is biologically relevant?
- What part of the local carbonate chemistry shall we monitor to infer biological response?
- Shall we care about variability in itself?
- How long shall we monitor to see biological impacts?

On the menu today

• What part of the carbonate chemistry is biologically relevant?

• What part of the local carbonate chemistry shall we monitor to infer biological response?

• Shall we care about variability in itself?

• How long shall we monitor to see biological impacts?

Ocean acidification in a nutshell

What is driving biological changes?

Is it Ω ?

Vulnerability and adaptation of US shellfisheries to ocean acidification

Julia A. Ekstrom^{1׆}, Lisa Suatoni², Sarah R. Cooley³, Linwood H. Pendleton^{4,5}, George G. Waldbusser⁶, Josh E. Cinner⁷, Jessica Ritter⁸, Chris Langdon⁹, Ruben van Hooidonk¹⁰, Dwight Gledhill¹¹, Katharine Wellman¹², Michael W. Beck¹³, Luke M. Brander¹⁴, Dan Rittschof⁸, Carolyn Doherty⁸, Peter E. T. Edwards^{15,16} and Rosimeiry Portela¹⁷

e.g. Threshold: Ω < 1.5 for calcifiers e.g. 80% of present

Organisms are not pieces of calcium carbonate

pH 7.5, <u>Ωara=0.35</u>

(Thomsen et al. 2010)

Acid-base regulatory mechanisms

Concept of threshold

Temperature: 0°C

How do you make ice at $>0^{\circ}C$

Afreezer

Energy cost

Concept of threshold

 $\Omega=1$

Physiological mechanisms

How to make $CaCO_3$ at $\Omega < 1$? $\Omega > 1$ at the calcification site

Life adapts to its environment

pH 5.36, <u>Ωara=0.01</u>

(Tunnicliffe et al. 2009)

Omega myth... but...

ICES Journal of Marine Science (2016), 73(3), 563-568. doi:10.1093/icesjms/fsv174

Contribution to Special Issue:	Towards a Broader Perspective on Ocean Acidification Research
Comment	

Calcium carbonate saturation state: on myths and this or that stories

George G. Waldbusser*, Burke Hales, and Brian A. Haley

ICES Journal of Marine Science (2016), 73(3), 558-562. doi:10.1093/icesjms/fsv075

Contribution to Special Issue: 'Towards a Broader Perspective on Ocean Acidification Research' Food for Thought

The Omega myth: what really drives lower calcification rates in an acidifying ocean

Tyler Cyronak^{1*}, Kai G. Schulz², and Paul L. Jokiel³

 Ω can be important for organisms with:

- Exposed skeletal structure (dissolution) e.g. corals
- Periods of fast calcification (kinetic constrains) e.g. larval bivalves

Is it $CO_3^{2-?}$

Calcification:

 $-Ca^{++} + CO_{3}^{--} -> CaCO_{3}^{--}$

 $Ca^{++} + 2HCO_{3} -> CaCO_{3} + H_{2}O + CO_{2}$

Is it $CO_3^{2-?}$

Seawater CO₃²⁻ not main bricks for calcification

Roleda et al. 2012

Why science matters?

Mussels and oysters aquaculture as a CO₂ capture method

Received: 14 March 2024	Revised: 10 July 2024	Accepted: 11 July 2024					
DOI: 10.1111/raq.12954							
REVIEW		REVIEWS IN Aquaculture					
Cracking the myth: Bivalve farming is not a CO ₂ sink							
Fabrice Pernet ¹ Frédéric Gazeau	Sam Dup 4	ont ^{2,3} Jean-Pierre Gattuso ^{4,5} Marc Metian ³					

Species sensitivity relates to: ability to protect/compensate & energy

 Ω main driver (kinetic constrains)

Mussels

Mussels

Compensatory calcification

Ventura et al. (2016)

Echinoderms

pH main driver (regulation)

Echinoderms

Is it CO_2 ?

$6CO_2 + 6H_2O ----> C_6H_{12}O_6 + 6O_2$

Photosynthesis

• Understand your biology to define the key driver(s)

On the menu today

- What part of the carbonate chemistry is biologically relevant?
- What part of the local carbonate chemistry shall we monitor to infer biological response?
- Shall we care about variability in itself?
- How long shall we monitor to see biological impacts?

Species- / population- specific

Population 1

Population 2

Species- / population- specific

8,7

8,6

8,5

8,4

8,2

8.1

7,9

7.8

Hd 8,3

Population 1

Population 2

Need local data

Other parameters are influencing the carbonate chemistry in the ocean

- ✓ Mixing/upwelling
- \checkmark Interaction with other parameters (e.g. temperature, salinity)
- \checkmark Other sources of acidification (nutrients, SOx/NOx)
- ✓ Biology (photosynthesis, respiration, calcification, etc.)

Global stressors

Population effect

	Таха	Environment	Mean ± SD environmental pCO ₂ levels (µatm)	Control pCO ₂ levels (µatm)	Experimental pCO ₂ levels (µatm)	Response	Mean effect	Reference
32,33		Coastal ocean	555.6 ± 157.5	380	1500	Respiration	+ 213%	32
	- Contraction of the second	Estuarine	623.42 ± 233.68	380	1500	Respiration	+147%	32
	00	Coastal ocean	555.6 ± 157.5	376	980 -1100	Ingestion	-47%	33
		Estuarine	623.42 ± 233.68	376	980 -1100	Ingestion	-33%	33
33,38	UP.	River-plume area	811.0 ± 185.7	376	980 -1100	Ingestion	-17%	33
	(Cor	Estuarine	623.42 ± 233.68	365 - 398	979 - 1077	Larval survival	-60%	38
32, 33, 37, 38	and the con-	River-plume area	811.0 ± 185.7	365 - 398	979 - 1077	Larval survival	-17	38
34		Estuarine	623.42 ± 233.68	347 - 377	910 - 960	Ingestion	- 60%	33
34	34	River-plume area	811.0 ± 185.7	347 - 377	910 - 960	Ingestion	-13%	33
		Tidal inlet	500.8 ± 140.2	388	979	Calcification Growth	-37% -35%	34
		Freshwater- influenced tidal inlet	608.9 ± 319.3	388	979	Calcification Growth	-4% -13%	34
		Coastal ocean	405.9 ± 95.4	398 - 405	1255	Ingestion	-72%	37
	Estuarine	623.42 ± 233.68	398 - 405	1255	Ingestion	+ 5%	37	

ecology & evolution

ANALYSIS PUBLISHED: 13 MARCH 2017 | VOLUME: 1 | ARTICLE NUMBER: 0084

Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity

Cristian A. Vargas^{12,3*}, Nelson A. Lagos^{1,4}, Marco A. Lardies^{3,5}, Cristian Duarte^{1,6}, Patricio H. Manríquez⁷, Victor M. Aguilera^{2,8}, Bernardo Broitman^{3,7}, Steve Widdicombe⁹ and Sam Dupont¹⁰

Local adaptation

ecology & evolution

ANALYSIS PUBLISHED: 13 MARCH 2017 | VOLUME: 1 | ARTICLE NUMBER: 0084

Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity

Cristian A. Vargas^{1,2,3}*, Nelson A. Lagos^{3,4}, Marco A. Lardies^{3,5}, Cristian Duarte^{3,6}, Patricio H. Manríquez⁷, Victor M. Aguilera^{2,8}, Bernardo Broitman^{3,7}, Steve Widdicombe⁶ and Sam Dupont¹⁰

Local adaptation

The more you deviate from today, the more negative impact

If you know the present variability, you can predict the threshold

ecology & evolution

ANALYSIS

Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity

Cristian A. Vargas^{12,3}*, Nelson A. Lagos^{3,4}, Marco A. Lardies^{3,5}, Cristian Duarte^{3,6}, Patricio H. Manríquez⁷, Victor M. Aguilera^{2,8}, Bernardo Broitman^{3,7}, Steve Widdicombe⁹ and Sam Dupont¹⁰

Upscale to the world

Same global trends

Differences between phyla

ANALYSIS https://doi.org/10.1038/s41558-021-01269-2 nature climate change

Upper environmental *p*CO₂ drives sensitivity to ocean acidification in marine invertebrates

Cristian A. Vargas ^{© 1,2,3}[⊠], L. Antonio Cuevas ^{© 1,3}, Bernardo R. Broitman ^{© 3,4}, Valeska A. San Martin³, Nelson A. Lagos^{3,5}, Juan Diego Gaitán-Espitia ^{© 6} and Sam Dupont^{7,8}

- Understand your biology to define the key driver(s)
- Need to capture the short-term variability and extremes

Biology is complicated

What are the physico-chemical conditions experienced by my organism/ecosystem?

Important to take into account:

✓ Microhabitats
Microhabitats

Before starting your experiment

What are the physico-chemical conditions experienced by my organism/ecosystem?

Important to take into account:

- ✓ Microhabitats
- ✓ Behaviour
- ✓ Life-history stages

Behaviour

The picture car's be-displayed.

Life-history stages

• Understand your biology to define the key driver(s)

Need to capture the short-term variability and extremes
... experienced by the organism / ecosystem

On the menu today

- What part of the carbonate chemistry is biologically relevant?
- What part of the local carbonate chemistry shall we monitor to infer biological response?
- Shall we care about variability in itself?
- How long shall we monitor to see biological impacts?

Scales of time and variability

Variability:

- Predictable (cycles)
- O Unpredictable (extreme events)

Exposure:

Duration (time, life-cycles, generations)

Adaptation: ecosystem protection & restoration (e.g. seagrass)

Increase biodiversity
Increase resilience
Capture carbon

Short term natural variability

Echinus esculentus

Damboia Cossa

Create variability

<u>Day</u>: light = Photosynthesis + respiration

- <u>Night</u>: dark
- = respiration

How will organism respond to this variability?

Design – experimental system

- Natural flowing surface seawater
- 12:12 light
- True replication
- Discrete + continuous measurements (temperature, salinity, oxygen, alkalinity, pH)

Chemistry

Seagrass increases the variability in pH through photosynthesis / respiration

4 different starting pH

4-8x more variability when seagrass is present

Daily net calcification

Decreasing calcification with decreasing pH Same daily calcification

Day-Night net calcification

Cycle of calcification (1 day - 1 night) Stronger and more regular in variable / seagrass environment

Day-Night net calcification

Two different environments -> two different strategies

• Understand your biology to define the key driver(s)

Need to capture the short-term variability and extremes
... experienced by the organism / ecosystem

• Variability is important in itself

On the menu today

- What part of the carbonate chemistry is biologically relevant?
- What part of the local carbonate chemistry shall we monitor to infer biological response?
- Shall we care about variability in itself?
- How long shall we monitor to see biological impacts?

Factors modulating biological rate of change

✓ Biological sensitivity

 \checkmark Chemical rate of change

Where to monitor to see biological changes?

Chemical rate of change depends on where you are

Factors modulating biological rate of change

How to estimate how long to monitor to see (robust) changes?

Use experimental data

Example: Gullmarsfjord, Sweden

Rate of chemical change

Marine Acidification On effects and monitoring of marine acidification in the seas surrounding Sweden

Letter DPA Andersson Co-authors Bertil Häkansson, Johan Häkansson, Elisabeth Sahisten Swedish Meteorological and Hydrological Institute Oceanographic Unil Jonathan Havenhand, Mike Thorndyke, Sam Dupont Gothenburg University. Swen Lovido: Centre for Manine Science

-0.0044 pH unit / year

Step 1: turn time into pH

Step 1: turn time into pH

Step 1: turn time into pH

Biological sensitivity (e.g. blue mussels)

Limitations:

- Experimental design
- Adaptation / Acclimation
- Ecological interactions
- \circ Modulating factors

Effect size (%) = 100 x $e^{-e(5.837 \times (pH - 7.765))}$

What can be expected

Biological observation (projected)

Not linear
 Need a wide range of pH
 to have the full curve

10 years of data

Linear regression (R²=0.97)

Effect size = 0.0332 x Time – 67.043

Biological rate: 0.033 % / year

40 years of data

Linear regression (R²=0.99)

Effect size = 0.4266 x Time – 871.03

Biological rate: 0.427 % / year

"Maximum" linear growth

Linear regression (R²=0.99)

Effect size = 0.9196 x Time – 1681

Max biological rate: 0.9196 % / year (linear)

Estimate the observed maximum rate of change after different duration of biological monitoring

Rate of biological change vs duration of monitoring

- Reach saturation

Need >80 years of data for a robust evaluation

Caution: Factors modulating biological rate of change

✓ Biological sensitivity

 \checkmark Chemical rate of change

For this exercise we assumed that both were **constants** BUT both can vary over time

Biological sensitivity

Higher the sensitivity = shorter the monitoring

The higher the species sensitivity, the faster you observe a robust rate of change

Higher the sensitivity = shorter the monitoring

Faster the chemical rate = shorter the monitoring

Summary

IF the goal is to observe robust estimate of biological rate of change, prioritize locations with high biological sensitivity and high chemical rate of change

- Understand your biology to define the key driver(s)
- Need to capture the short-term variability and extremes
 ... experienced by the organism / ecosystem
- Variability is important in itself
- Depending on you question and/or your capacities, chose location / strategy accordingly