

IAEA Incident and Trafficking Database (ITDB)

2024 Factsheet

Incidents of nuclear and other radioactive material out of regulatory control

The IAEA Incident and Trafficking Database (ITDB) is a component of the IAEA information management systems and supports the implementation of the IAEA Nuclear Security Plan. The ITDB contains authoritative information, voluntarily reported by participating States through their officially nominated Points of Contact (PoCs). This information is disseminated through the IAEA to participating States and relevant international organizations.

Following the joining of Somalia and Togo, the number of ITDB participating States increased to 145 in 2023.

The information

in this Factsheet summarizes the details of confirmed incidents, as voluntarily reported by the participating States, and represents a cross-section of the aggregated ITDB data that has been made available for the public domain.

Scope of the ITDB

As originally established, the ITDB recorded incidents of illicit trafficking of nuclear and other radioactive material. Its scope was later expanded to include all incidents in which nuclear and other radioactive material is or was out of regulatory control.

The ITDB scope covers all types of nuclear material as defined by the Statute of the Agency (i.e. uranium, plutonium and thorium), naturally occurring and artificially produced radioisotopes and radioactively contaminated material, such as scrap metal. States are also encouraged to voluntarily report incidents involving scams or hoaxes where material is purported to be nuclear or otherwise radioactive.

Communication with participating States is maintained through the network of national PoCs. The ITDB receives information from PoCs on incidents ranging from illegal possession, attempted sale and smuggling to unauthorized disposal of material and discovery of lost radioactive sources.

The IAEA Secretariat reviews all reported incidents with a view to identify common threats, trends, and patterns; to assist States in determining what actions may need to be taken with respect to particular events or to help formulate policy towards combating illicit trafficking of such materials; and to support the Agency's nuclear security activities.

ITDB at a glance

The ITDB was established by the IAEA Secretariat and its Member States in 1995 to:

- assist States with the timely exchange
 of authoritative information on incidents
 involving illicit trafficking and other related
 unauthorized activities involving nuclear and
 other radioactive materials;
- maintain and analyze reported information
 with a view to identifying common threats,
 trends, and patterns; to assist States in
 determining what actions may need to be
 taken with respect to particular events or to
 help formulate policy towards combating illicit
 trafficking of such materials; and support the
 Agency's nuclear security activities; and
- provide a reliable source of basic information to the media concerning trafficking incidents by providing authoritative information about such events, when appropriate.

Confidentiality and security of ITDB information

The ITDB is a resource for information sharing among State authorities and the IAEA. In order to protect the confidentiality of information reported by States, the IAEA upholds strict procedures for handling and dissemination of sensitive ITDB information. Information on reported incidents is only communicated via the PoC network. Access to the complete database is limited to a small number of IAEA staff.

ITDB highlights during the period of 1993–2023

In 2023, 168 incidents were reported to the ITDB by 31 States, an increase of 22 incidents from 2022. In 2023, the number of incidents reported by participating States to the ITDB on unauthorized activities and events involving nuclear and other radioactive material out of regulatory control continued to follow historical averages.

The groups of incident types used in ITDB are the following:

- Group I: incidents that are, or are likely to be, connected with trafficking or malicious use;
- Group II: incidents of undetermined intent; and
- Group III: incidents that are not, or are unlikely to be, connected with trafficking or malicious use.

Figure 1. The number of the incidents recorded in ITDB during the period 1993–2023 per incident type group.

As of 31 December 2023, the ITDB contained a total of 4243 confirmed incidents reported by participating States since 1993. Of the 4243 confirmed incidents there are 350 within Group I, 1045 incidents within Group II and 2848 incidents within Group III.

Incidents reported by States to the ITDB Secretariat showed a steady upward trend from 1993 to 2007, with a notable increase in 2006 and 2007. This peak was caused by a change in the reporting practice of one country. After this peak, the trend stabilized and remained at an average of 182 incidents per year for approximately a decade.

A decline in reporting is observed from 2020 to 2021, which is likely a result of the far-reaching impact of the COVID-19 pandemic. However, in 2023, the number of incidents reported by States continued to follow historical averages of 136 incidents per year. This indicates a recovery in the trend from the challenges posed by the pandemic.

An analysis of trends related to the types of materials involved in reported incidents indicates a decline in the reporting of incidents involving nuclear material. Conversely, during

the same period, there is a noticeable increase in reporting for incidents involving radioactive materials, and radioactively contaminated and other non-radioactive materials¹.

The majority of industrial sources that are reported stolen, lost or missing are those used for non-destructive testing and for applications in construction and mining. Most such devices use relatively long-lived isotopes, such as caesium-137 and americium-241.

The ITDB categorizes the activity of sealed radioactive sources in accordance with the IAEA Safety Standards², which ranks them from Category 1 to Category 5 in terms of their potential to cause harmful health effects³. Incidents reported to the ITDB in 2023 include incidents involving sources of Category 5 up to and including Category 2. The information reported underscores the need to provide appropriate security measures for such sources as well as to enhance the regulatory arrangements governing their use, storage, transport and disposal.

Globally, the recovery rate for Category 1–3 radioactive sources⁴ is higher, compared to the

ITDB incidents 1993-2023

Type of material

- 14% of all incidents involved nuclear material:
- 59% involved other radioactive material;
- Around 27% involved radioactively contaminated and other material.

14%

nvolved nuclear

Thefts/losses/missing

The majority of materials reported to the ITDB as stolen or lost (or otherwise missing under uncertain circumstances), involve radioactive sources that are used in industrial, material analysis or medical applications. Devices containing radioactive sources can be attractive to a potential thief as they may be perceived to have a high resale or scrap metal value.

Trafficking or malicious use intent in reported thefts

- 4% of the reported thefts have been confirmed to be related to trafficking;
- Around 9% have been confirmed to be not related to trafficking or malicious use;
- The trafficking or malicious use intent of around 87% of thefts remains undetermined.

Transport-related

Overall, about 52% of all thefts reported to the ITDB since 1993 have occurred during the authorized transport of such materials. This figure stands at almost 65% in the last decade, which highlights the ongoing importance of strengthening transport security measures.

- ¹ The ITDB Secretariat also collects data on non-radioactive materials that the perpetrator(s) claim to be radioactive. This type of materials is always associated with scams or fraud. Incidents of this type are consistently categorized in the ITDB as Group I incidents, indicating a confirmed intent for trafficking.
- ² INTERNATIONAL ATOMIC ENERGY AGENCY, Categorization of Radioactive Sources, IAEA Safety Standards Series No. RS-G-1.9, IAEA, Vienna (2005).
- 3 The exposure of only a few minutes to an unshielded Category 1 source can be fatal. Category 5 sources are the least dangerous; however, such sources could give rise to detrimental health consequences if misused.
- 4 Category 1, 2 and 3 sources are defined in the IAEA Safety Standards referenced in footnote 2 respectively as extremely dangerous to the person, very dangerous to the person and dangerous to the person.

Categories 4 and 5 radioactive sources⁵. This can be attributed to the concerted effort made by the authorities to recover such sources. However, these dangerous sources comprise only around 13% of the total stolen sources. The majority of incidents relating to Categories 4 and 5 radioactive sources do not have a follow-up report confirming their recovery. Thefts of these sources that are unlikely to be dangerous comprise around 87% of the total.

Analysis per Group of incident types

Group I: Incidents of trafficking or malicious use, 1993–2023

Incidents in this group are those for which there is sufficient information to determine that the incident is connected with trafficking or malicious use. This group also includes scams and frauds as such acts may indicate the intent to acquire or provide nuclear and/or other radioactive material, in particular, for trafficking or malicious use.

In recent years, incidents related to trafficking or malicious use have been reported at steady levels, although the frequency has remained low. Trafficking-related incidents and attempts constitute almost 86% of the Group I total while scams/frauds and attempts are almost 13% and malicious use and attempts are less than 2%.

In the period between 1993 and 2023, confirmed incidents in this group included high enriched uranium (13), plutonium (3), and plutonium-beryllium neutron sources⁶ (5).

By type of material, 47% of Group I incidents involved nuclear material, around 37% involved other radioactive materials and around 16% involved other materials, mostly non-radioactive materials used in scam/frauds.

A small number of the above incidents involved seizures of kilogram quantities of potentially weapons-usable nuclear material, but the majority involved gram quantities⁷. In some of these cases, circumstantial information suggested that the seized materials were samples from larger unsecured stockpiles. Some of these incidents

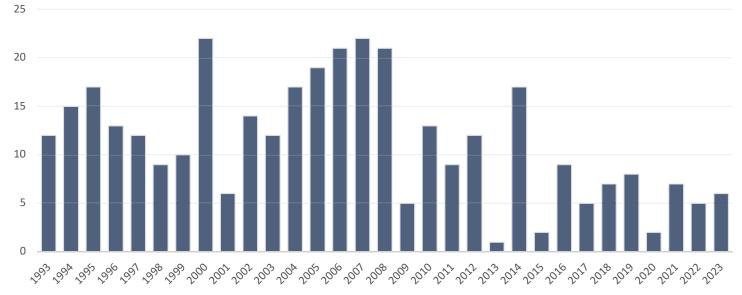


Figure 2. Incidents reported to the ITDB that are confirmed, or likely, to be connected with trafficking or malicious use, 1993–2023.

⁵ Category 4 and 5 sources are defined in the IAEA Safety Standards referenced in footnote 2 respectively as unlikely to be dangerous to the person. Despite the lower concern from a safety perspective, these sources are still relevant from a security perspective.

⁶ Incidents involving plutonium-based smoke detectors and other small plutonium sources are counted separately and totaled 13 in Group I. However, one of these 13 incidents comprised one small (calibration) plutonium source together with a plutonium-beryllium neutron source among other sources so this incident is also counted within the 5 incidents that involved plutonium-beryllium neutron sources. Consequently, the incidents involving both plutonium-beryllium neutron sources and small plutonium sources totaled 17 and not 18.

⁷ The latest incident that involved kilogram quantities of weapons usable nuclear material occurred in 1994.

involved attempts to sell or traffic these materials across international borders.

Reported trafficking incidents continue to decline, which is in line with the historical trend. However, a notable shift can be observed in 2023, with an apparent increase in reported incidents involving the theft of materials. While scam attempts involving hoax (non-radioactive) material that is purported to be nuclear or other radioactive material have remained fairly constant in recent years, the focus on incidents involving the theft of material from authorized transport has become more pronounced over the same period.

It should be noted that incidents involving attempts to sell nuclear or other radioactive material are often detected through sting operations. The number of successful transactions is not known and therefore it is difficult to accurately characterize an actual 'illicit nuclear market'. Where information on motives is available, it indicates financial gain to be the principal incentive behind the majority of events. Most trafficking incidents could be characterized as 'amateur' or opportunistic in nature, as demonstrated by ad-hoc planning and a lack of resources and technical proficiency. However, there are a few significant cases that appear more organized, better resourced and that involved perpetrators with a track record in

trafficking nuclear/radioactive material or other criminal activities. Such cases have been relatively rare, and none have occurred for almost a decade.

Group II: Incidents of undetermined intent, 1993–2023

Incidents in this group are those for which there is insufficient information to determine whether the incident is either connected or unconnected with trafficking or malicious use. The majority of incidents in this group involve stolen or missing material. Such occurrences can mark the beginning of an illicit trafficking incident. Thefts and missing material are also indicative of vulnerabilities in security and control systems at the originating

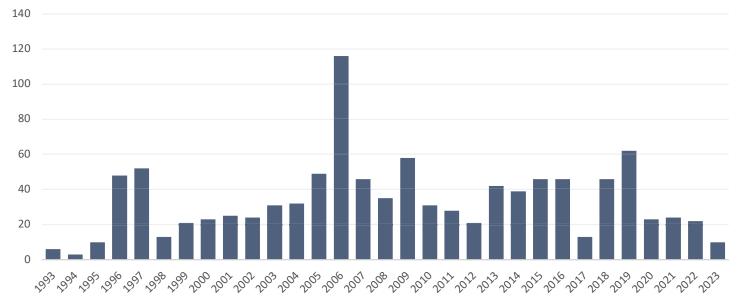


Figure 3. Incidents reported to the ITDB where there is insufficient information to determine that the incident is, or is likely to be, either connected or unconnected with trafficking or malicious use⁸, 1993–2023.

⁸ It should be noted that the spike of incidents in 2006 is related to a change in reporting practice by one country, rather than any change in the long-term trend of such incidents.

facility, temporary storage or during transport. The remaining incidents are unauthorized possessions where there is no information regarding the intent of the individuals involved.

In the period between 1993 and 2023, confirmed incidents in Group II included high enriched uranium (2), and plutonium-beryllium neutron sources (3)9. No such materials were reported in 2023. Overall, in the 1993–2023 period the majority of Group II incidents were comprised of radioactive sources (83%). In 2023, however, this figure was ~59%, which indicates that States reported more incidents where the offender's intent could be clearly determined. In 2023 two incidents were reported as involving two Category-3 radioactive sources.

Group III: Incidents not connected with trafficking or malicious use, 1993–2023

Incidents in this group are those for which there is sufficient information to determine that the incident is not connected with trafficking or malicious use. These incidents primarily involve various types of material recovery, such as discovery of uncontrolled sources, detection of materials disposed of in an unauthorized way and detection of inadvertent unauthorized possession or shipment of nuclear or other radioactive material, including radioactively contaminated material.

The majority of incidents in Group III fall into one of three categories: the unauthorized disposal (e.g. radioactive sources domestically entering the scrap metal or waste recycling industries); unauthorized shipment (e.g. orphan sources or scrap metals contaminated with radioactive material being shipped across international borders); or the discovery of radioactive material (e.g. uncontrolled radioactive sources). The occurrence of such incidents indicates deficiencies in the systems to control, secure and properly dispose of radioactive material. The increase in reporting of these incidents between 2003 and 2005 coincides with the deployment of an increased number of radiation portal monitoring systems at national borders and scrap metal facilities.

The number of Group III incidents reported over the last decade has averaged at around 136 incidents per year.

In the 1993–2023 period, more than half (53%) of incidents involved radioactive sources while only around 10% of all incidents in this group involved nuclear material. Incidents involving high enriched uranium (20), plutonium (3), and plutonium-beryllium neutron sources (10) were reported¹⁰. These included a number of reports of scrap metal shipments contaminated with high enriched uranium received by scrapyards, the most recent of which occurred in 2014.

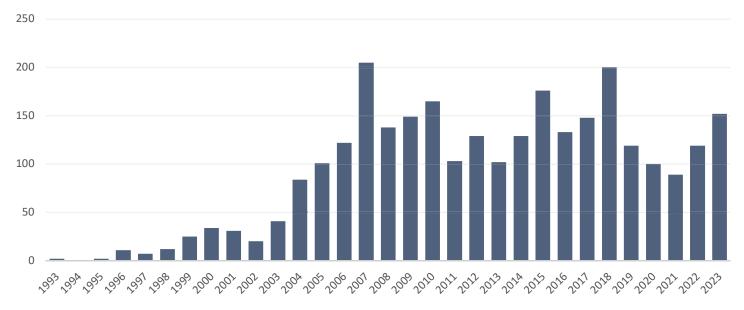


Figure 4. Incidents where there is sufficient information to determine that the incident is not, or is unlikely to be, connected, with trafficking or malicious use, 1993–2023.

⁹ Incidents involving plutonium-based smoke detectors and other small plutonium sources are counted separately and totaled 13 in Group II.

¹⁰ Incidents involving plutonium-based smoke detectors and other low activity plutonium sources are counted separately and totaled 52 in Group III.

The national Points of Contact have an important role in reporting incidents to the ITDB.

Radioactively contaminated and other materials, such as manufactured goods and parts, metal scrap and naturally occurring radioactive materials (NORM), constitute the remaining incidents (37%).

In recent years, a growing number of incidents involved detections at metal recycling chains and the detection of manufactured goods contaminated with radioactive material. This indicates a persistent problem for some countries in securing and detecting the unauthorized disposal of radioactive sources. The most common source of such contamination is the feed material (in most cases, metal) from which the product had been manufactured. Much feed material is often obtained from the metal recycling industry and, in the process of being melted down, can become contaminated with material from an undetected radioactive source such as cobalt-60. The resulting contaminated metal, if used to manufacture household goods, could pose a potential health problem to unsuspecting consumers.

Joining the ITDB

Non-participating States are encouraged to join the ITDB. States wishing to join the ITDB need to contact the IAEA Division of Nuclear Security. States will be asked to nominate a national PoC who will provide reports on incidents to the ITDB, receive ITDB information and reports produced by the IAEA and facilitate responses to the IAEA Secretariat's enquiries on specific incidents. Information on the ITDB, the procedures for reporting incidents and copies of the Incident Notification Form will be provided to the PoC¹¹.

Membership applications and nominations of PoC should be sent to:

Ms. Elena Buglova Director, Division of Nuclear Security International Atomic Energy Agency Vienna International Centre P.O. Box 100 A-1400, Vienna, Austria

Tel: +43-1-2600-22299

Annex: States participating in the ITDB as of 31 December 2023

1. Albania 2. Algeria

3. Antigua & Barbuda

4. Argentina

5. Armenia 6. Australia 7. Austria

8. Azerbaijan

9. Bahrain

10. Bangladesh

Belarus 11.

Belgium 12. 13. Benin

14. Bolivia

Bosnia and Herzegovina 15.

16. Botswana 17.

Brunei Darussalam 18.

Bulgaria

20. Burkina Faso Cambodia 21.

22. Cameroon 23. Canada

Central African Republic 24.

25. Chad 26. Chile

27. China

28. Colombia 29. Comoros

30. Congo

31. Costa Rica 32. Côte d'Ivoire

33. Croatia

34. Cuba 35. Cyprus

36. Czech Republic

37. Democratic Republic

of the Congo

38. Denmark

Dominican Republic 39.

Ecuador 40. 41. El Salvador 42. Estonia

43. Ethiopia

Finland 44.

45. France

Georgia

46.

Gabon

Germany

49. Ghana

50. Greece

51. Guatemala

52. Haiti

53. Honduras

54. Hungary

Iceland

India 56.

55.

57. Indonesia

58. Iran

59. Iraq

60. Ireland

61. Israel

62. Italy

63. Jamaica 64. Japan

Jordan 65.

66. Kazakhstan

67. Kenya

68. Korea, Republic of

69. Kuwait

70. Kyrgyzstan

71. Latvia

72. Lebanon

73. Lesotho

74. Libya

75. Lichtenstein

76. Lithuania

77. Luxembourg

78. Madagascar

79. Malawi

Malaysia

81. Mali

82. Malta

Mauritania 83.

84. Mauritius

85. Mexico

86. Mongolia

87. Montenegro

88. Morocco

89. Mozambique

90. Myanmar

Namibia 91.

92. Nepal

Netherlands, Kingdom of

New Zealand

95. Niger

96. Nigeria

North Macedonia

98. Norway

99. Oman

100. Pakistan

101. Panama

102. Papua New Guinea

103. Paraguay

104. Peru

105. Philippines

106. Poland

107. Portugal 108. Qatar

109. Republic of Moldova

110. Romania

111. Russian Federation

112. Rwanda

113. Saudi Arabia

114. Senegal

115. Serbia

116. Sierra Leone

117. Singapore

118. Slovakia

119. Slovenia

120. Somalia 121. South Africa

122. Spain

123. Sri Lanka

124. Sudan

125. Swaziland

126. Sweden

127. Switzerland

128. Tajikistan

129. Tanzania

130. Thailand

131. Togo

132. Tunisia

133. Türkiye

134. Uganda 135. Ukraine

136. United Arab Emirates

137. United Kingdom

138. United States of America

139. Uruguay

140. Uzbekistan

141. Venezuela

142. Vietnam

143. Yemen

144. Zambia 145. Zimbabwe

