### Information (15:00), July 26, 2023

To All Missions (Embassies, Consular posts and International Organizations in Japan)

### Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station during June

The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the discharge record and seawater monitoring results with regard to groundwater pumped from the sub-drain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of June at Fukushima Daiichi Nuclear Power Station (NPS).

### 1. Summary of decommissioning and contaminated water management

In June the summary of monthly progress on decommissioning and contaminated water management of Fukushima Daiichi NPS was issued shown in Appendix 1. For more information, please see the following URL:

https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/mp202306.pdf

### 2. Sub-drain and Groundwater Drain Systems

In June purified groundwater pumped from the sub-drain and groundwater drain systems was discharged on the dates shown in Appendix 2. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced.

All the test results during the month of June have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Tohoku Ryokka Kankyohozen Co.).

In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater was substantially below the operational target (see Appendix 3).

Moreover, TEPCO publishes the results of analyses conducted on seawater

sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 4). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

### 3. Groundwater Bypassing

In June, the pumped bypassing groundwater was discharged on the dates shown in Appendix 5. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced.

All the test results during the month of June have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center.

In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater were substantially below the operational target (see Appendix 6).

Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 7). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. The analysis had been conducted once a month until March 2017. Since April 2017, it is conducted four times a year because there has been no significant fluctuation in the concentration of radioactive materials in the sea water, and no influence on the surrounding environment has been confirmed.

The sampling process for analyses conducted this month is the same as the one conducted in the information disseminated last month. Results of the analyses are shown in the attached appendices:

(For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website:http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html) Contact: International Nuclear Energy Cooperation Division,

Ministry of Foreign Affairs, Tel 03-5501-8227

Appendix

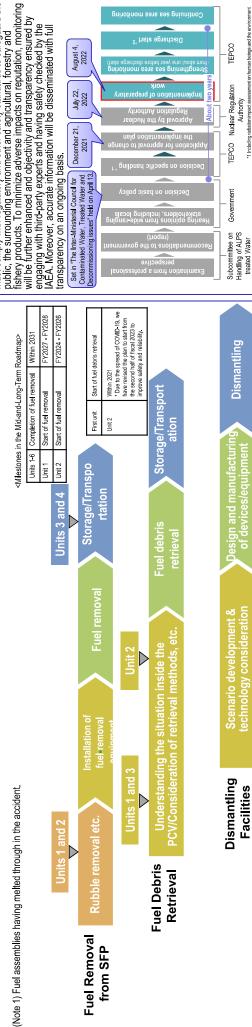
must comply with regulatory and other safety standards to safeguard the

August 4, 2022

July 22, 2022

2021

Regarding the discharge of ALPS treated water into the sea, TEPCC


Handling of ALPS treated water

Measures for treated water

# June 29, 2023 Outline of Decommissioning, Contaminated Water and Treated Water Management Secretariat of the Team for Countemeasures for Outline of Decommissioning, Contaminated Water and Treated Water

## Main decommissioning work and steps

Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris (Note 1) retrieval from Units 1-3 Fuel removal from the spent fuel pool was completed in December 2014 at Unit 4 and on February 28, 2021 at Unit 3.

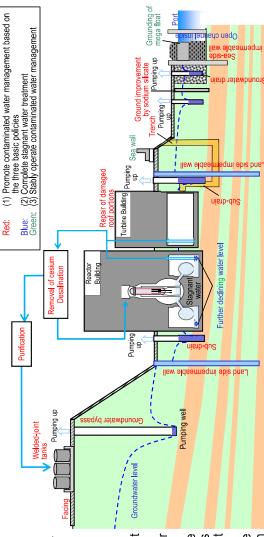


## Contaminated water management - triple-pronged efforts -

- Efforts to promote contaminated water management based on the three basic policies
  - "Remove" the source of water contamination (2) "Redirect" fresh water from contaminated areas (3) "Retain" contaminated water from leakage
- Strontium-reduced water from other equipment is being re-treated in the Advanced Liquid Processing System (ALPS: multi-nuclide removal equipment) and stored in welded-joint tanks.
- and sub-drains, have stabilized the groundwater at a low level and the increased contaminated water generated during rainfall is being suppressed by repairing damaged portions of building roofs facing onsite, etc. Through these measures, the generation of contaminated water was Multi-layered contaminated water management measures, including land-side impermeable walls reduced from approx. 540 m³/day (in May 2014) to approx. 130 m³/day (in FY2021).
- Measures continue to further suppress the generation of contaminated water to 100 m3/day or less within 2025

## (2) Efforts to complete stagnant water treatment

- To reduce the stagnant water levels in buildings as planned, work to install additional stagnant water transfer equipment is underway.
  - In 2020, treatment of stagnant water in buildings was completed, except for the Unit 1-3 Reactor Buildings, Process Main Building and High-Temperature Incinerator Building.
- While conducting the dust impact assessment, measures to reduce the stagnant water level were implemented. In March 2023, the target water level in each building was achieved. For the Units 1-3 Reactor Buildings, "reducing stagnant water in the Reactor Buildings to about half the amount at the end of 2020 during the period FY2022-2024" was achieved.
  - For zeolite sandbags on the basement floors of the Process Main Building and High-Temperature Incinerator Building, measures to reduce the radiation dose are being examined with stabilization


### Efforts to stably operate contaminated water management 3

\*1 Including radiation impact assessment on human beings and the environme \*2 Discharges into the sea will be conducted gradually during the initial phase

Authority

TEPCO

install sea walls to enhance drainage channels and other measures is being implemented as Various measures are underway to prepare for tsunamis. For heavy rain, sandbags are being installed to suppress direct inflow into buildings while work to close openings in buildings and planned



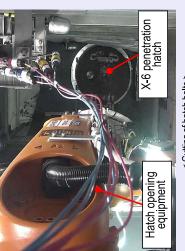
### Progress status

The temperatures of the Reactor and the Primary Containment Vessel of Units 1-3 have been maintained stable.

There was no significant change in the concentration of radioactive materials newly released from Reactor Buildings into the air. It was concluded that the comprehensive cold shutdown condition had been maintained.

## Unit 2 Preparation status for the internal investigation of the

## Primary Containment Vessel and trial retrieval


before trial debris retrieval. As of June 28, 20 of From June 19, work to cut the hatch bolts is underway to open the X-6 penetration hatch 24 bolts had been disconnected.

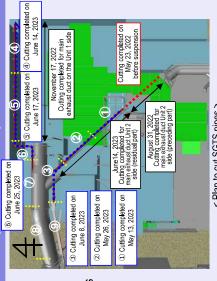
the bolts which were disconnected from the nuts, After cutting the remaining bolts and removing the hatch will be opened.

It was confirmed that no significant variation

was detected in the indicated values of dust monitors and monitoring posts, nor any abnormality in the plant parameters.

Work continues while prioritizing safety.




< Cutting of hatch bolts >

# Units 1/2 Progress of pipe cutting for the Standby Gas Treatment System

Reactor Building cover and other works are For pipes of the Units 1/2 Standby Gas interfering with installation of the Unit 1 Treatment System (SGTS), sections being removed.

Cutting of the sixth of a total of nine sections ninth section will be cut after rearranging the scheduled was completed on June 25. The process and removing rubble from the surrounding area.

Treatment Building will also be removed as surrounding the 1/2 Radioactive Waste Simultaneously, rubble in the area well as the main exhaust duct.



< Plan to cut SGTS pipes >

In February 2022, leakage was detected from the ipe (main pipe) of the land-side impermeabl eventive maintenance for the brine supply

coupling joint at the brine supply pipe on the Units 2 and 3 mountain side. The leakage already stopped after replacing the coupling join

sjje

remova

Cover for fuel

1535/1535\*1 Removed fuel (assemblies)

Fuel-handling machine Crane

**266/566** 

Removed fuel (assen

(Fuel removal completer on February 28, 2021)

Shield

Front chamber

Spent Fuel Pool

Operating floor

Primary Containment

Pedesta

Assembly of the guaranty steel frame is underway

даицу із пидегмаў

Dome roof

(Fuel removal completed on December 22, 2014)

FHM girder

After investigating the cause, it was confirmed that uneven frost\* heave had affected the margin\*2 gap set in the pipe.

opening, preventive maintenance will be conducted After determining the elements affecting the according to the management level.

\*1 Phenomenon in which moisture in the soil freezes, expands and locally causes the ground surface to increase.
\*2 dep at the pipe edge to absorb expansion and contraction of the pipes caused by the change in temperature

\*1 Including two new fuel assemblies removed first in 2012

Unit 4

Unit 3

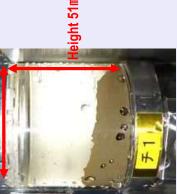
Unit 2

Reactor Building (R/B) Unit 1

chamber (SC) Fue debris Suppression

## Unit 1 Response based on the pedestal status

assessed the level of external dust exposure just in case concrete had been lost around almost all the lower par The Unit 1 PCV internal investigation confirmed that of the pedestal inner wall. In response, TEPCO of losing the support function of the pedestal


exposure risk. Moreover, at the regular press conference Based on this result, TEPCO evaluated that the site on June 7, the Chairman of the Nuclear Regulation boundary would not pose any significant radiation Authority stated, "Hearing the reports of a minimal impact on the environment, I think this result is reasonable.

suppression measures in readiness for emergencies. Furthermore, TEPCO will consider dust-scattering

Unit 1 Analysis of deposits acquired in the internal investigation of the

Regarding the deposit samples acquired by the inclusive water will be separated and the deposits Containment Vessel (PCV) internal investigation, will then be transported to an external analysis deposits and supernatant in sampled PCV ROV-E investigation in the Unit 1 Primary institute for detailed analysis.

and amounts of elements and nuclides contained in samples and examining the particle generation analysis, aiming to acquire information related to accident development by determining the types The external analysis institute will conduct an



< Deposit sampling container >

It was also confirmed and publicized that in the third-party analysis by JAEA, the discharge criteria of the government of the government had been met. nad been met.

results, it was confirmed and publicized that before diluting and discharging ALPS treated water, the discharge criteria

facilities, acquired samples were analyzed. Based on the

For System B of the measurement and confirmation

Regulation Authority started.

confirmation, transfer, dilution and discharge) of the ALPS

treated water dilution/discharge facilities was completed. From June 28, the pre-service inspection by the Nuclear

On June 26, removal of the arrival pipe (shield machine)

dilution/discharge facilities and others

Progress of ALPS treated water

and installation of the discharge lid were completed. With

this, the installation of all facilities (for measurement and

Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

|                                         | _                                                       |           | (Unit: Bq/L)             |  |
|-----------------------------------------|---------------------------------------------------------|-----------|--------------------------|--|
| Data of compline                        | ata of compling Detected                                |           | Analytical body          |  |
| *Date of discharge                      | *Date of sampling Detected  *Date of discharge nuclides | TEPCO     | Third-party organization |  |
|                                         | Cs-134                                                  | ND (0.62) | ND (0.58)                |  |
| June 26 <sup>th</sup> , 2023            | Cs-137                                                  | ND (0.60) | ND (0.57)                |  |
| *Discharged on<br>July 1 <sup>st</sup>  | Gross β                                                 | ND (1.8)  | ND (0.35)                |  |
| outy 1                                  | H-3                                                     | 800       | 830                      |  |
| 4                                       | Cs-134                                                  | ND (0.84) | ND (0.55)                |  |
| June 25 <sup>th</sup> , 2023            | Cs-137                                                  | ND (0.64) | ND (0.48)                |  |
| *Discharged on<br>June 30 <sup>th</sup> | Gross β                                                 | ND (1.9)  | ND (0.35)                |  |
| June 30                                 | H-3                                                     | 740       | 790                      |  |
|                                         | Cs-134                                                  | ND (0.71) | ND (0.66)                |  |
| June 24 <sup>th</sup> , 2023            | Cs-137                                                  | ND (0.72) | ND (0.51)                |  |
| *Discharged on<br>June 29 <sup>th</sup> | Gross β                                                 | ND (2.0)  | ND (0.36)                |  |
| Julie 29                                | H-3                                                     | 680       | 730                      |  |
|                                         | Cs-134                                                  | ND (0.80) | ND (0.58)                |  |
| June 23 <sup>th</sup> , 2023            | Cs-137                                                  | ND (0.62) | ND (0.72)                |  |
| *Discharged on<br>June 28 <sup>th</sup> | Gross β                                                 | ND (0.64) | ND (0.35)                |  |
| Julie 20                                | H-3                                                     | 660       | 680                      |  |
|                                         | Cs-134                                                  | ND (0.66) | ND (0.63)                |  |
| June 22 <sup>nd</sup> , 2023            | Cs-137                                                  | ND (0.67) | ND (0.45)                |  |
| *Discharged on<br>June 27 <sup>th</sup> | Gross β                                                 | ND (1.7)  | ND (0.43)                |  |
| ound 27                                 | H-3                                                     | 640       | 680                      |  |
|                                         | Cs-134                                                  | ND (0.91) | ND (0.63)                |  |
| June 21 <sup>st</sup> , 2023            | Cs-137                                                  | ND (0.72) | ND (0.61)                |  |
| *Discharged on<br>June 26 <sup>th</sup> | Gross β                                                 | ND (1.9)  | ND(0.34)                 |  |
| 00110-20                                | H-3                                                     | 600       | 650                      |  |
| 204                                     | Cs-134                                                  | ND (0.80) | ND (0.60)                |  |
| June 20 <sup>th</sup> , 2023            | Cs-137                                                  | ND (0.72) | ND (0.50)                |  |
| *Discharged on<br>June 25 <sup>th</sup> | Gross β                                                 | ND (1.9)  | ND (0.35)                |  |
| 04110 20                                | H-3                                                     | 630       | 660                      |  |
| June 19 <sup>th</sup> , 2023            | Cs-134                                                  | ND (0.71) | ND (0.68)                |  |
| *Discharged on                          | Cs-137                                                  | ND (0.77) | ND (0.54)                |  |
|                                         |                                                         |           |                          |  |

| June 24 <sup>th</sup>                   | Gross β | ND (1.9)        | ND (0.38) |
|-----------------------------------------|---------|-----------------|-----------|
|                                         | H-3     | 710             | 720       |
|                                         | Cs-134  | ND (0.74)       | ND (0.70) |
| June 18 <sup>th</sup> , 2023            | Cs-137  | , ,             | ND (0.78) |
| *Discharged on                          | Gross β | ND (0.83)       | 0.40      |
| June 23 <sup>th</sup>                   | H-3     | ND (1.8)<br>760 |           |
|                                         |         |                 | 810       |
| June 17 <sup>th</sup> , 2023            | Cs-134  | ND (0.71)       | ND (0.63) |
| *Discharged on                          | Cs-137  | ND (0.59)       | ND (0.58) |
| June 22 <sup>th</sup>                   | Gross β | ND (1.6)        | ND (0.41) |
|                                         | H-3     | 850             | 880       |
| June 16 <sup>th</sup> , 2023            | Cs-134  | ND (0.81)       | ND (0.70) |
| ,                                       | Cs-137  | ND (0.75)       | ND (0.58) |
| *Discharged on<br>June 21 <sup>th</sup> | Gross β | ND (0.57)       | ND (0.43) |
|                                         | H-3     | 790             | 840       |
| L 4.5th 0000                            | Cs-134  | ND (0.66)       | ND (0.58) |
| June 15 <sup>th</sup> , 2023            | Cs-137  | ND (0.67)       | ND (0.48) |
| *Discharged on<br>June 20 <sup>th</sup> | Gross β | ND (1.9)        | ND (0.38) |
| <b>54</b> 5 <b>2</b> 5                  | H-3     | 750             | 820       |
|                                         | Cs-134  | ND (0.74)       | ND (0.60) |
| June 14 <sup>th</sup> , 2023            | Cs-137  | ND (0.67)       | ND (0.58) |
| *Discharged on<br>June 19 <sup>th</sup> | Gross β | ND (1.6)        | ND (0.34) |
| June 13                                 | H-3     | 740             | 830       |
|                                         | Cs-134  | ND (0.66)       | ND (0.66) |
| June 13 <sup>th</sup> , 2023            | Cs-137  | ND (0.67)       | ND (0.51) |
| *Discharged on<br>June 18 <sup>th</sup> | Gross β | ND (1.7)        | ND (0.40) |
| June 10"                                | H-3     | 830             | 880       |
|                                         | Cs-134  | ND (0.86)       | ND (0.71) |
| June 12 <sup>th</sup> , 2023            | Cs-137  | ND (0.62)       | ND (0.70) |
| *Discharged on                          | Gross β | ND (1.8)        | ND (0.43) |
| June 17 <sup>th</sup>                   | H-3     | 930             | 960       |
|                                         | Cs-134  | ND (0.57)       | ND (0.57) |
| June 11 <sup>th</sup> , 2023            | Cs-137  | ND (0.55)       | ND (0.61) |
| *Discharged on                          | Gross β | ND (2.0)        | 0.42      |
| June 16 <sup>th</sup>                   | H-3     | 930             | 980       |
|                                         | Cs-134  | ND(0.92)        | ND(0.59)  |
| June 10 <sup>th</sup> , 2023            | Cs-137  | ND(0.82)        | ND(0.54)  |
| *Discharged on                          | Gross β | ND(2.0)         | ND(0.34)  |
| June 15 <sup>th</sup>                   | H-3     | 910             | 970       |
| luno Oth 2022                           | Cs-134  |                 |           |
| June 9 <sup>th</sup> , 2023             |         | ND (0.69)       | ND (0.55) |
| *Discharged on                          | Cs-137  | ND (0.60)       | ND (0.66) |

| June 14 <sup>th</sup>                   | Gross β | ND (0.64) | ND (0.35) |
|-----------------------------------------|---------|-----------|-----------|
|                                         | H-3     | 880       | 940       |
|                                         | Cs-134  | ND (0.78) | ND (0.64) |
| June 8 <sup>th</sup> , 2023             | Cs-137  | ND (0.79) | ND (0.57) |
| *Discharged on                          | Gross β | ND (1.8)  | 0.52      |
| June 13 <sup>th</sup>                   | H-3     | 850       | 890       |
|                                         | Cs-134  | ND (0.87) | ND (0.47) |
| June 7 <sup>th</sup> , 2023             | Cs-137  | ND (0.75) | ND (0.59) |
| *Discharged on                          | Gross β | ND (2.0)  | ND (0.38) |
| June 12 <sup>th</sup>                   | H-3     | 880       | 930       |
|                                         |         |           |           |
| June 6 <sup>th</sup> , 2023             | Cs-134  | ND (0.77) | ND (0.55) |
| *Discharged on                          | Cs-137  | ND (0.65) | ND (0.51) |
| June 11 <sup>th</sup>                   | Gross β | ND (1.9)  | ND (0.37) |
|                                         | H-3     | 890       | 970       |
| June 5 <sup>th</sup> , 2023             | Cs-134  | ND (0.80) | ND (0.55) |
|                                         | Cs-137  | ND (0.65) | ND (0.54) |
| *Discharged on<br>June 10 <sup>th</sup> | Gross β | ND (2.0)  | ND (0.35) |
|                                         | H-3     | 920       | 980       |
| June 4 <sup>th</sup> , 2023             | Cs-134  | ND (0.71) | ND (0.68) |
| •                                       | Cs-137  | ND (0.60) | ND (0.59) |
| *Discharged on<br>June 9 <sup>th</sup>  | Gross β | ND (1.6)  | ND (0.36) |
|                                         | H-3     | 930       | 990       |
| luna 2rd 2022                           | Cs-134  | ND (0.92) | ND (0.60) |
| June 3 <sup>rd</sup> , 2023             | Cs-137  | ND (0.66) | ND (0.70) |
| *Discharged on<br>June 8 <sup>th</sup>  | Gross β | ND (1.9)  | ND (0.35) |
| ourio o                                 | H-3     | 900       | 980       |
| I Ond coop                              | Cs-134  | ND (0.71) | ND (0.66) |
| June 2 <sup>nd</sup> , 2023             | Cs-137  | ND (0.60) | ND (0.59) |
| *Discharged on<br>June 7 <sup>th</sup>  | Gross β | ND (0.64) | ND (0.33) |
| Julie /                                 | H-3     | 920       | 1000      |
|                                         | Cs-134  | ND (0.63) | ND (0.68) |
| May 31 <sup>st</sup> , 2023             | Cs-137  | ND (0.59) | ND (0.70) |
| *Discharged on<br>June 5 <sup>th</sup>  | Gross β | ND (1.9)  | 0.37      |
| June 5 <sup></sup>                      | H-3     | 870       | 940       |
|                                         | Cs-134  | ND (0.66) | ND (0.57) |
| May 30 <sup>th</sup> , 2023             | Cs-137  | ND (0.62) | ND (0.70) |
| *Discharged on                          | Gross β | ND (1.7)  | ND(0.38)  |
| June 4 <sup>th</sup>                    | H-3     | 850       | 940       |
|                                         | Cs-134  | ND (0.86) | ND (0.65) |
| May 28 <sup>th</sup> , 2023             | Cs-137  | ND (0.79) | ND (0.75) |
| *Discharged on                          | Gross β | ND (1.8)  | ND(0.36)  |
| June 2 <sup>nd</sup>                    | H-3     | 830       | 880       |

- \* \* ND: represents a value below the detection limit; values in ( ) represent the detection limit.
- \* In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- \* Third-party organization : Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

(Unit: Bq/L)

|                           | Detected                          | Analytical body |             |                                   |
|---------------------------|-----------------------------------|-----------------|-------------|-----------------------------------|
| Date of sampling          | ate of sampling Detected nuclides | JAEA            | TEPCO       | Japan Chemical<br>Analysis Center |
|                           | Cs-134                            | ND (0.0030)     | ND (0.0055) | ND (0.0059)                       |
|                           | Cs-137                            | 0.0021          | ND(0.0037)  | ND (0.0049)                       |
| May 2 <sup>nd</sup> ,2023 | Gross α                           | ND (0.33)       | ND (2.0)    | ND (2.6)                          |
| Iviay 2**,2023            | Gross β                           | ND (0.46)       | ND (0.63)   | ND (0.65)                         |
|                           | H-3                               | 840             | 830         | 840                               |
|                           | Sr-90                             | 0.0046          | 0.0054      | 0.0060                            |

<sup>\*</sup> ND: represents a value below the detection limit; values in ( ) represent the detection limit.

(Reference) (Unit: Bq/L)

| Radionuclides | Operational Targets | Density Limit<br>specified by the<br>Reactor Regulation | World Health<br>Organization (WHO)<br>Guidelines for<br>Drinking Water<br>Quality |
|---------------|---------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|
| Cs-134        | 1                   | 60                                                      | 10                                                                                |
| Cs-137        | 1                   | 90                                                      | 10                                                                                |
| Gross α       | _                   | _                                                       | _                                                                                 |
| Gross β       | 3 (1) *             | I                                                       |                                                                                   |
| H-3           | 1,500               | 60,000                                                  | 10,000                                                                            |
| Sr-90         | _                   | 30                                                      | 10                                                                                |

 $<sup>\</sup>divideontimes$  The operational target of Gross  $\beta$  is 1 Bq/L in the survey which is conducted once every ten days.

The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel)

| Date of sampling                         | Detected nuclides | Sampling point (South discharge channel) |
|------------------------------------------|-------------------|------------------------------------------|
| June 7 <sup>th</sup> , 2023              | Cs-134            | ND (0.84)                                |
| *C                                       | Cs-137            | ND (0.61)                                |
| *Sampled before<br>discharge of purified | Gross β           | 14                                       |
| groundwater.                             | H-3               | ND (0.34)                                |

Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

|                                         | 1                 |                 | (Unit: Bq/               |
|-----------------------------------------|-------------------|-----------------|--------------------------|
| Date of compling                        |                   | Analytical body |                          |
| Date of sampling *Date of discharge     | Detected nuclides | TEPCO           | Third-party organization |
|                                         | Cs-134            | ND (0.83)       | ND (0.60)                |
| June 22 <sup>th</sup> , 2023            | Cs-137            | ND (0.94)       | ND (0.54)                |
| *Discharged on<br>June 27 <sup>th</sup> | Gross β           | ND (0.65)       | ND (0.34)                |
| Julie 21                                | H-3               | 51              | 56                       |
|                                         | Cs-134            | ND (0.80)       | ND (0.60)                |
| June 15 <sup>th</sup> , 2023            | Cs-137            | ND (0.67)       | ND (0.79)                |
| *Discharged on<br>June 20 <sup>th</sup> | Gross β           | ND (0.66)       | ND (0.30)                |
| Julie 20 <sup>ss</sup>                  | H-3               | 54              | 56                       |
|                                         | Cs-134            | ND (0.84)       | ND (0.62)                |
| June 8 <sup>th</sup> , 2023             | Cs-137            | ND (0.66)       | ND (0.62)                |
| *Discharged on<br>June 13 <sup>th</sup> | Gross β           | ND (0.66)       | ND (0.31)                |
| June 13"                                | H-3               | 49              | 54                       |
|                                         | Cs-134            | ND (0.74)       | ND (0.53)                |
| June 2 <sup>nd</sup> , 2023             | Cs-137            | ND (0.71)       | ND (0.62)                |
| *Discharged on<br>June 7 <sup>th</sup>  | Gross β           | ND (0.61)       | ND (0.33)                |
| Julie / ···                             | H-3               | 53              | 54                       |

<sup>\* \*</sup> ND: represents a value below the detection limit; values in ( ) represent the detection limit

<sup>\*</sup> In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.

<sup>\*</sup> Third-party organization: Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

(Unit: Bq/L)

|                            |                                    | Analytical body |             |                                   |
|----------------------------|------------------------------------|-----------------|-------------|-----------------------------------|
| Date of sampling           | Date of sampling Detected nuclides | JAEA            | TEPCO       | Japan Chemical<br>Analysis Center |
|                            | Cs-134                             | ND (0.0030)     | ND (0.0053) | ND (0.0071)                       |
|                            | Cs-137                             | ND (0.0020)     | ND (0.0038) | ND (0.0055)                       |
| May 5 <sup>th</sup> , 2023 | Gross α                            | ND (0.38)       | ND (2.0)    | ND (2.6)                          |
| Iviay 5 , 2025             | Gross β                            | ND (0.45)       | ND (0.65)   | ND (0.57)                         |
|                            | H-3                                | 53              | 57          | 54                                |
|                            | Sr-90                              | ND (0.0011)     | ND (0.0014) | ND (0.0062)                       |

<sup>\*</sup> ND: represents a value below the detection limit; values in ( ) represent the detection limit.

(Reference) (Unit: Bq/L)

| Radionuclides | Operational Targets | Density Limit<br>specified by the<br>Reactor Regulation | World Health<br>Organization<br>(WHO) Guidelines<br>for Drinking Water<br>Quality |
|---------------|---------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|
| Cs-134        | 1                   | 60                                                      | 10                                                                                |
| Cs-137        | 1                   | 90                                                      | 10                                                                                |
| Gross α       | _                   | _                                                       | _                                                                                 |
| Gross β       | 5 (1) *             | _                                                       | _                                                                                 |
| H-3           | 1,500               | 60,000                                                  | 10,000                                                                            |
| Sr-90         | _                   | 30                                                      | 10                                                                                |

 $<sup>\</sup>divideontimes$  The operational target of Gross  $\beta$  is 1 Bq/L in the survey which is conducted once every ten days.

The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel)

| Date of sampling<br>%conducted four times a<br>year | Detected nuclides | Sampling point (South discharge channel) |
|-----------------------------------------------------|-------------------|------------------------------------------|
| June 7 <sup>th</sup> , 2023                         | Cs-134            | ND (0.83)                                |
|                                                     | Cs-137            | ND (0.65)                                |
|                                                     | Gross β           | 9.5                                      |
|                                                     | H-3               | ND (0.31)                                |