Radiation in dental practice

Reinhilde Jacobs
ABOUT US

IAEA RESOURCES & EDUCATION

Widely known as the world’s “Atoms for Peace and Development” organization within the United Nations family, the IAEA is the international center for cooperation in the nuclear field. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure, and peaceful use of nuclear technologies. For more information visit the IAEA official website here.
WEBINARS

Joint IAEA/FR-IAEA webinars

Watch the free webinars on the radiation protection topics in medical uses of ionizing radiation, and take the opportunity to learn from the world’s leading radiation protection experts.

Sarah Baatout
What can radiobiology bring to the dento-maxillofacial radiology? a radiation protection perspective

Ruben Pauwels
Optimization of dental cone-beam computed tomography exposures: a practical guide

Eva Levrn Jøghagen
Improved justification and optimization of dental 2D and 3D imaging through education and training

Keith Horner
Justification of X-ray examinations in dentistry
CBCT
3/4 virtual planning
1/4 diagnosis
ALADA IP: indication oriented & patient specific imaging
LETTER TO THE EDITOR

ALADAIP, beyond ALARA and towards personalized optimization for paediatric cone-beam CT

Anne Caroline Oenning, Reinhilde Jacobs, Benjamin Salmon, the DIMITRA Research Group (http://www.dimitra.be)

First published: 12 April 2021 | https://doi.org/10.1111/ipd.12797 | Citations: 1
Hormesis

Very low dose radiation
DMFR 50TH ANNIVERSARY: REVIEW ARTICLE

Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview

Hugo Gaêta-Araujo, Tamara Alzoubi, Karla de Faria Vasconcelos, Kaan Orhan, Ruben Pauwels, Jan W Casselman and Reinhilde Jacobs

280 CBCT models

CBCT ≠ CBCT
CBCT ≠ CBCT

Dentomaxillofacial paediatric imaging: an investigation towards low dose radiation induced risks
Planning Tooth Autotransplantation

1h to 1 m
Indication specific optimization

As Low Dose as Sufficient Quality: Optimization of Cone-beam Computed Tomographic Scanning Protocol for Tooth Autotransplantation Planning and Follow-up in Children

Mostafa EzElddeen, DDS, MSc,D,† Andreas Stratis, MSc,* Wim Coucke, PhD,‡ Martina Codari, MSc,* Constantinos Politis, MD, DDS, MHA, MM, PhD,* and Reinilde Jacobs, DDS, PhD, MSc, Dr hc*
<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Dose</th>
<th>Time of sampling</th>
<th>Tissue examined</th>
<th>Tissue used</th>
<th>Biological effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 subjects ≤ 22.520 subjects > 22.5</td>
<td>21.4 μSv</td>
<td>keratinized mucosa of the upper dental arch</td>
<td>Significant induction of MN</td>
<td>Cerqueira et al. (2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.70 ± 1.50</td>
<td>0.08 Roentgen (Entrance dose)</td>
<td>Exfoliated oral mucosa cells</td>
<td>No induction of MN, and cytotoxicity (pyknosis, karyolysis). Significant induction of karyorrhexis.</td>
<td>Angelieri et al. (2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–40</td>
<td>0.057 mSv (Average dose)</td>
<td>Cells of the lateral border of the tongue</td>
<td>No induction of MN, but increased cytotoxicity (pyknosis, karyolysis, karyorrhexis). The number of karyorrhexis and binucleated cells was greater after multiple X-rays</td>
<td>Da Silva et al. (2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exfoliated oral mucosa cells</td>
<td>No induction of MN, but increased cytotoxicity (pyknosis, karyolysis, karyorrhexis).</td>
<td>Popova et al. (2007)</td>
<td></td>
</tr>
</tbody>
</table>

DMFR 50th ANNIVERSARY: REVIEW ARTICLE

Radiobiological risks following dentomaxillofacial imaging: should we be concerned?

1-2 Niels Belmans, 3-5 Anne Caroline Oenning, 4-5 Benjamin Salmon, 1-4 Bjorn Baselet, 4-6 Kevin Tabury, 7-8 Stéphane Lucas, 7-8 Ivo Lambrecht, 7-8 Marjan Moreels, 9-10 Reinhilde Jacobs and 11-12 Sarah Bautout