Lección 3

Monitorización de fotones en el lugar de trabajo

Objetivos de la monitorización

Objetivos de la monitorización:

- medir la tasa del equivalente de dosis ambiental, H*(10) en los puntos de interés;
- evaluar la intensidad de los campos de radiación en el lugar de trabajo para el cumplimiento regulatorio, y
- aplicar los valores de medición para el control de exposiciones externas.

Contenido

- Técnicas de monitorización
- Equipos
- Calibración y verificación de funcionamiento
- Medición en la práctica
- Equipos especializados

- El proceso de monitorización implica en la colocación del punto de referencia de un monitor adecuado en el punto de monitorización.
- El punto de referencia debe estar lo más cerca posible del punto de medición previsto.
- En teoría, no hay necesidad de apuntar el equipo hacia una dirección particular, pero en la práctica ningún equipo es totalmente isotrópico en su respuesta.

- Además, el operador producirá un blindaje considerable para la radiación proveniente de la parte posterior del equipo. Por lo tanto, es importante identificar una dirección para cada punto de supervisión.
- Por esta razón, los monitores gamma fijos se deben instalar al nivel de la cabeza o superior.

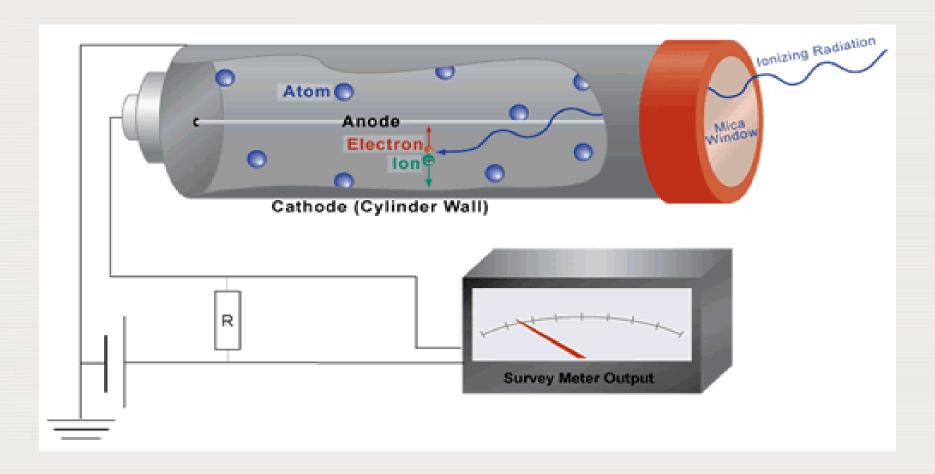
- Monitorización especial -investigativa- es realizada:
 - en áreas donde las condiciones son desconocidas;
 - cuando hay problemas con el blindaje;
 - cuando hay búsquedas de fuentes, y
 - cuando es necesario medir las tasas de dosis en la superficie de un paquete.
- La monitorización es más fácil con equipos más sensibles.
- Se utilizan equipos portátiles auxiliados por el uso de la salida de audio.

- Los equipos instalados monitorean el lugar del trabajo continuamente.
- Las alarmas y los indicadores remotos son deseables.
- Debe seleccionarse la mejor posición para el equipo.
 Considere los escenarios de la tasa de dosis potencial.
 Asegúrese de que el equipo no esté blindado y que esté ubicado correctamente.

Equipos

Equipos

- El equipo adecuado se determina principalmente por el rango anticipado de las tasas de dosis y si hay presencia de radiación de energía relativamente baja.
- Es importante elegir el equipo que responda de modo adecuado a la tasa de dosis más baja, definida anteriormente por el profesional.
- Otro punto importante es si el campo de radiación tiene un componente significativo de baja energía (por debajo de 60 keV).


Equipos

Se pueden emplear:

- contador G-M;
- cámaras de ionización;
- contadores proporcionales;
- centelladores plásticos, y
- detectores semiconductores.

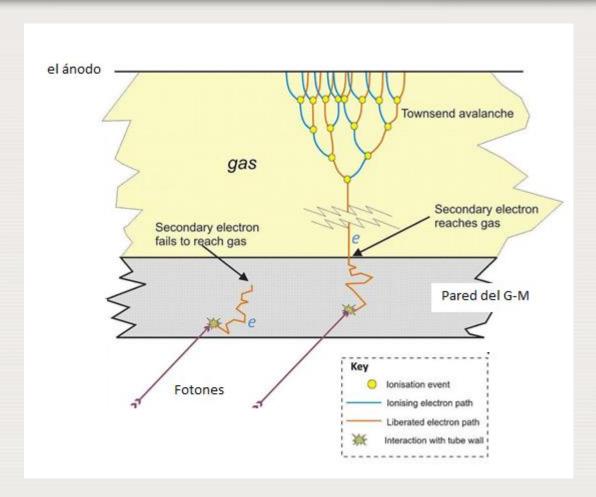
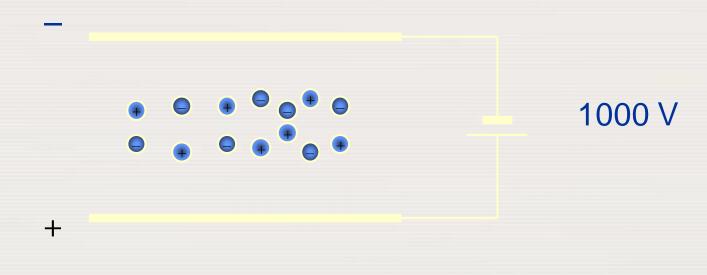


Diagrama esquemático del detector llenado de gas

Diagrama esquemático del detector llenado de gas



Detección de fotones

Diagrama esquemático del detector llenado de gas

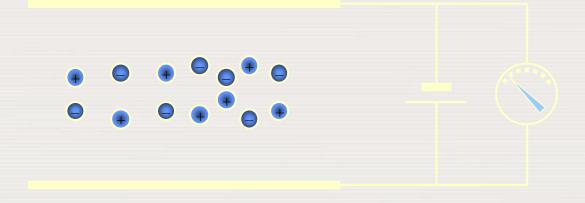

Comportamiento de las partículas cargadas en un campo eléctrico

Diagrama esquemático del detector lleno de gas

La salida del detector es un pulso de carga cuando los iones son coleccionados en el electrodo.

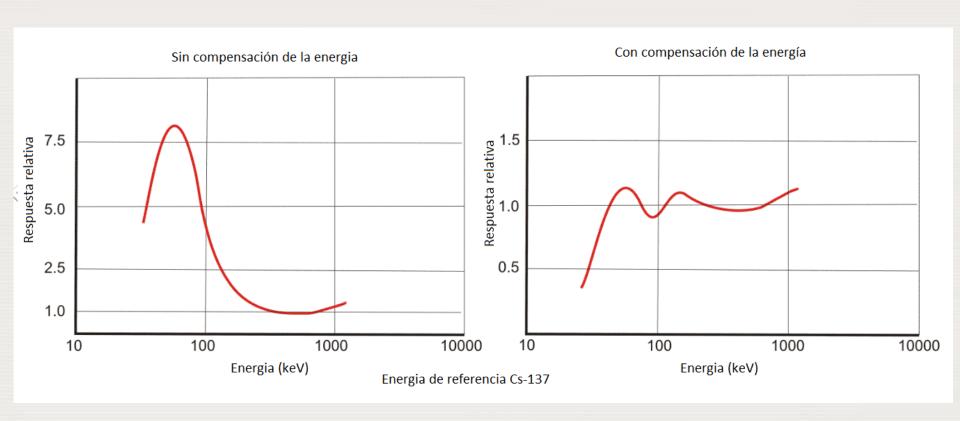
Detectores G-M para MLT

Ventana final	La radiación entra en el volumen sensible del detector a través de una ventana de mica muy delgada (1,5-3 mg/cm²). La protección de la ventana delgada es realizada por una malla. Los tubos G-M de ventanas finales pueden detectar alfa, beta y gamma.
Ventana lateral	Este detector tiene una placa metálica deslizante sobre la ventana. Las partículas beta (300 keV y superior) y los rayos gamma se pueden detectar con la ventana abierta. Cerrando la ventana se elimina la contribución beta.
"Pancake"	Un G-M tipo "pancake" es similar a la ventana final en que se utiliza una ventana de mica muy delgada. Su diseño ofrece una mayor área de detección que la sonda de la ventana final

Contador G-M: ventajas

- Mayor sensibilidad en comparación con la cámara de ionización.
- Un tamaño pequeño es posible, debido a la mayor sensibilidad.
- Se puede operar en modo 'pulso' o 'corriente', dependiendo de la electrónica.
- Los G-Ms compensados por energía son adecuados para medir H*(10).
- Relativamente barato.

Contador G-M - limitaciones


- El tiempo muerto es de aproximadamente 300 µs.
- Se satura a altas tasas de dosis.
- No es posible detallar la energía o el tipo de la radiación.
- No se puede utilizar para medir la fuente de radiación pulsada de los aceleradores con precisión.
- Muestra dependencia energética, por lo tanto, se necesitan filtros metálicos alrededor del detector.

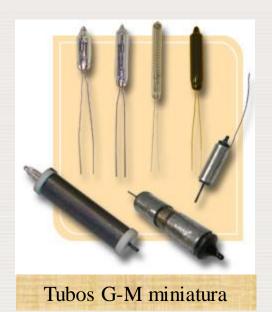
rodas

Dependencia energética de los tubos G-M

Filtros metálicos alrededor del detector

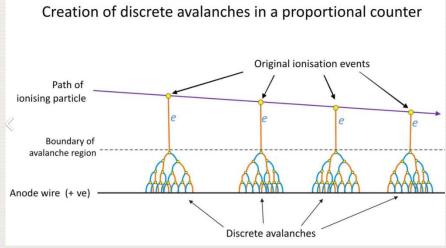


Tubo G-M con paredes delgadas equipado con los anillos de compensación de energía. El montaje completo encaja en la carcasa de aluminio.


Dependencia angular de los tubos G-M

El G-M cilíndrico típico tiene una baja dependencia angular

Ejemplos típicos de detectores G-M



Cortesía: Canberra

Contadores proporcionales

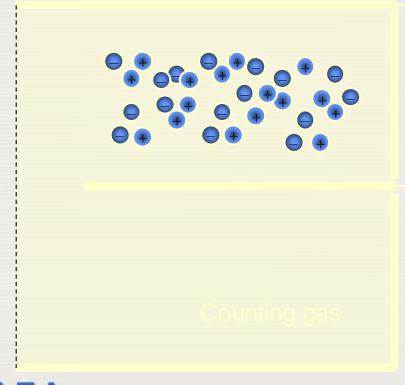

- Contadores proporcionales no se usan con frecuencia.
- Son más sensibles que las cámaras de ionización y adecuadas para mediciones en campos de radiación de baja intensidad.
- Requieren una fuente de alimentación muy estable.

Diagrama esquemático del detector proporcional

El número de iones formados es proporcional a la energía de la radiación.

Ejemplo de um contador proporcional

Baja dependencia energética y bajo límite de detección, más caro.

Cámaras de ionización

- El detector funciona en modo corriente con aire como gas de llenado.
- No se requiere amplificación de gas para el funcionamiento.
- Ideal para mediciones de la tasa de exposición; puede medir niveles de radiación muy altos prácticamente sin tiempo muerto.
- No hay dependencia de energía por encima de 100 keV.

Cámaras de ionización - ventajas

- Dependencia enérgica y angular baja.
- Más confiable que tubos G-M en áreas con tasa de dosis alta, y por lo tanto instalada con el fin de monitorizar continuamente alta tasas de dosis.
- Puede ser utilizada en campos de radiación pulsados.
- Se puede utilizar para medir campos de radiación beta si se proporciona una tapa de ventana.
- Estándar de oro para mediciones de exposición.

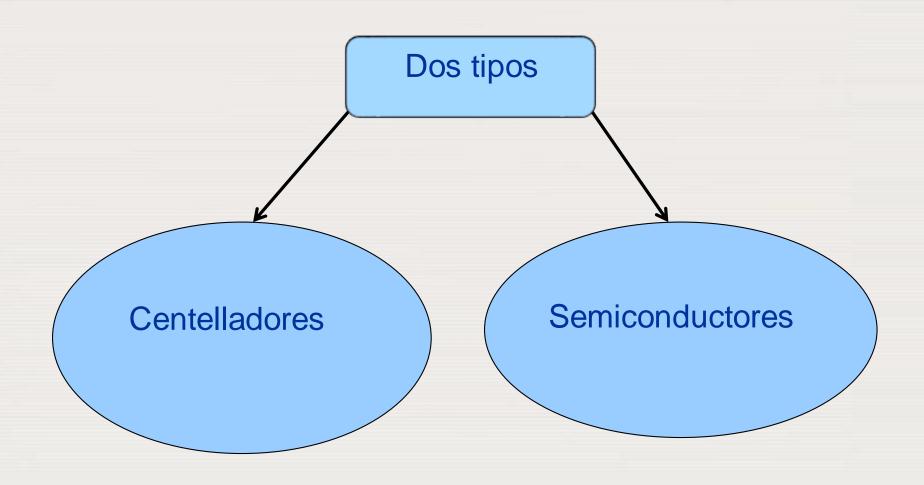
Cámaras de Ionización - limitaciones

- Mayor costo y tamaño en comparación con el tubo G-M de la misma sensibilidad.
- Tiene un alto índice de fluctuaciones en los niveles de fondo debido a la baja sensibilidad y la respuesta es lenta.
- Sensible a las condiciones de temperatura, presión y humedad.
- El detector tiene una corriente de fuga; la mayoría de los diseños requieren un ajuste del "cero".
- Área de promedio grande.

Cámaras de ionización y MLT

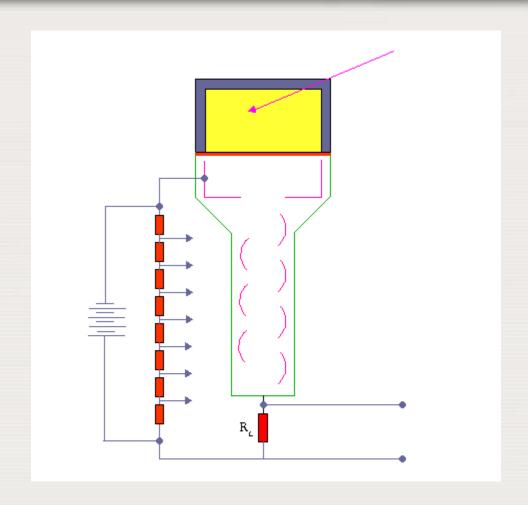
Cortesía: Mirion

Cámara de ionización portátil. Rango: 1 µSv/h a 1 Sv/h volumen del detector: 350 cm³.


Cámara de ionización fijo. Rango:1 µSv/h a 1 Sv/h.

Detectores de estado sólido

Detectores de estado sólido



Centelladores

- El centelleo es el proceso a través del cual la radiación ionizante se convierte en fotones de luz visible.
- El centelleo puede proporcionar información sobre la energía de la radiación y por lo tanto puede ser útil en espectroscopia nuclear.
- La detección ocurre en la escala de tiempo de nanosegundos.
- Se utilizan plásticos y Nal(TI), Csl(TI) o LaBr:Ce³⁺.

Diagrama esquemático del detector de centelleo.

Centelleadores - características

- Centelladores inorgánicos alto número atómico y por lo tanto, alta eficiencia para la radiación gamma.
- La sensibilidad es de 10³ a 10⁴ veces mayor que los detectores de gas dependiendo del material.
- La intensidad de la luz es proporcional a la energía de radiación.
- Puede utilizarse a temperatura ambiente.

Centelladores y MLT

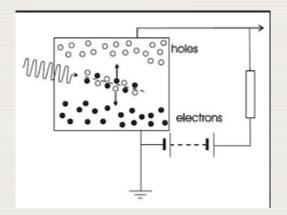
- Los centelleadores Nal(TI) se utilizan como monitores fijos y los equipos portátiles.
- Equipos con centelladores plásticos con rangos de tasa de dosis de 0,01 µSv/h a 10 Sv/h están disponibles en el mercado.
- Algunos equipos también proporcionan información sobre el espectro energético del campo de radiación.

Ejemplos de centelledores

Cortesía: Canberra

Rango: $0,1 \mu Sv/h$ a 100 m Sv/h.

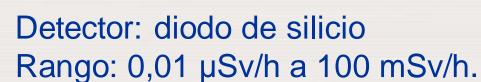
Cortesía: Nucleonix

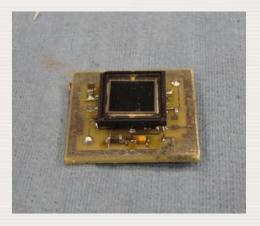

Equipo portátil Rango: 0,01 a 100 mSv/hr.

Centelladores plásticos portátiles Rango: 10 nSv/h a 100 µSv/h.

Semiconductores

- Tipos: diodo de silicio (Si) y Cadmio-Zinc-Telurio (CdZnTe).
- De tamaño pequeño tamaño de una tarjeta de crédito.
- Detectores portátiles HPGe están disponibles para espectroscopia de alta resolución.





Ejemplos de semiconductores

Cortesía: Fuji electric

Calibración y verificación

Calibración

La calibración es el proceso de comparar los valores obtenidos por un equipo de medición con la medida correspondiente de un patrón de referencia (o estándar).

Factor de calibración:

Es el valor verdadero convencional de la magnitud que el equipo tiene la intención de medir, H, dividido por la indicación, M, tal cual es indicado por el equipo.

Calibración

- La calibración debe utilizar cualidades de radiación definidas en (ISO 4037-3: ¹³⁷ Cs y ²⁴¹Am).
- La calibración se realiza a tasas de dosis que representan entre 1/3 y 2/3 de cada escala de medida.
- Un factor de calibración entre ± 1,2 es un factor de calibración aceptable.

Calibración

- Todas las escalas no calibradas deben identificarse en el equipo.
- La calibración debe realizarse al menos a cada año o a una frecuencia indicada por la autoridad reguladora.
- La calibración de monitores instalados es realizada por el fabricante. Después, el equipo se prueba en comparación con un equipo portátil calibrado o con una fuente, incluyendo:
 - verificación de funcionamiento y indicación de fondo, y
 - prueba de la alarma (incluyendo la respuesta a las tasas de dosis altas y bajas.

Verificación de funcionamiento

Para un equipo fijo, se incluirá:

- verificación de funcionamiento;
- comprobar si las luces de la alarma están funcionando;
- comprobación visual de la condición física;
- verifique la indicación de medición, y
- indicación de fondo.

Verificación de funcionamiento

Para un equipo portátil se debe incluir:

- comprobación visual de la condición física, cable, sonda, etc.;
- validez de la calibración;
- la batería;
- indicación de fondo;
- indicación de la fuente de control, y
- funcionamiento de la alarma.

3

- 1. Fuente sellada de la alta actividad; mantener la distancia.
- 2. Monitorización de la contaminación superficial.
- 3. Radiografía gamma la verificación de la posición de la fuente.
- 4. Equipo fijo de monitorización.

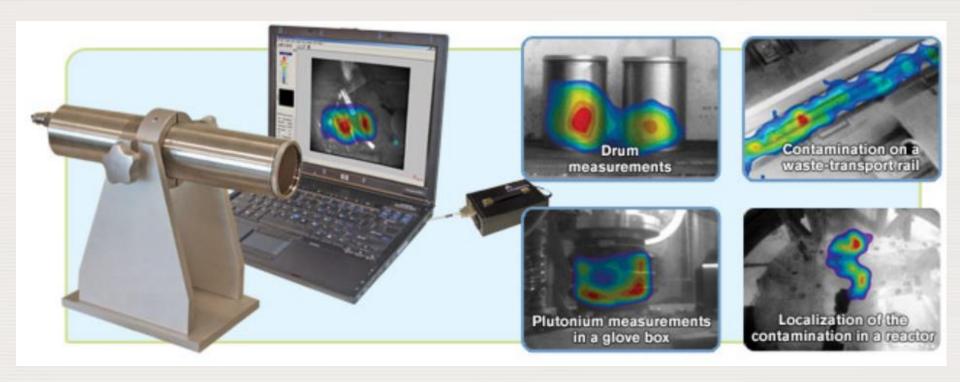
- El equipo debe ser apropiado para el tipo, la energía y la intensidad de la radiación y para la magnitud de interés.
- Realizar la verificación del funcionamiento.
- Verificar la validez del certificado de calibración.
- Verificar los niveles de la alarma para la tarea (tasas de dosis y dosis integrada).
- Realizar el monitorización del campo de radiación.

- En el lugar de monitorización, mueva el monitor para obtener la tasa de dosis más alta.
- Tenga cuidado con la posibilidad de un haz colimado.
- Cuando se mida una tasa de dosis alta o baja inesperada, actúe inmediatamente.
- Esperar a que la lectura del detector se estabilice.
- Los contadores G-M no se deben utilizar en campos de radiación pulsados.

- Utilice detectores telescópicos para altas tasas de dosis.
- Utilizar señal de audio y/o baliza luminosa giratoria.
- Minimizar el tiempo en el campo de radiación.
- Cubra la sonda para evitar contaminar el equipo.
- Apague el equipo cuando no esté en uso.
- No balancee la sonda por el cable.

Ejemplos de equipos especializados

G-M "pancake" con compensación energética

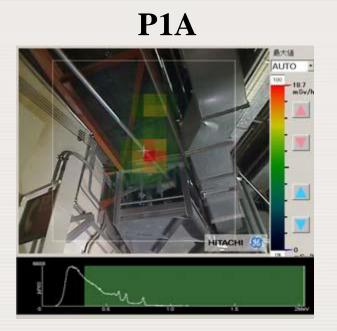


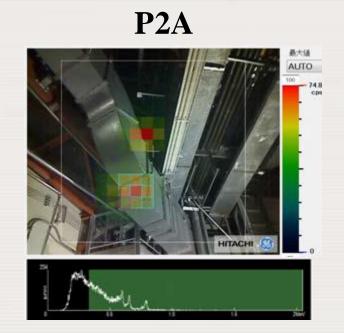
Especificación:

- Ventana de mica 1,8 a 2,2 mg/cm².
- Diámetro efectivo de 28 o 45 mm.
- Buena eficiencia para las radiaciones alfa, beta y gamma.
- Tasa de dosis máxima: 2 mSv/h.
- Intervalo de energía:17 keV a 1,3 MeV.

Gammacámara

Gammacámera empleada para detectar la contaminación


Gammacámera empleada en Fukushima

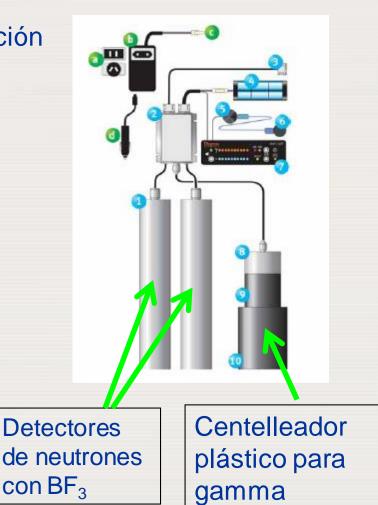


Cortesía: Toshiba

Gammacámera empleada en Fukushima

Visualización de "hotspots" en el edificio del reactor de la central nuclear de Fukushima Dai-ichi. P1-A y P2-A son imágenes de las mismas penetraciones de la pared observados desde diferentes ubicaciones con la gamma cámara construida con CdZnTe.

Ref: Progress in Nuclear Science and Technology, Volume 4 (2014) pp. 14-17



Mochila para la búsqueda de fuentes

Alarma configurada al +20% de radiación de fondo.

Intervalo de energía: 50 keV a 3 MeV.

Detectores recientes

Cortesía :Thermo fisher

Especificación

- Detector de neutrones y gamma, tamaño bolsillo.
- Puede distinguir entre el material NORM y no NORM.
- Compensación energética para radiación gamma.
- No hay falsas alarmas de neutrones al medir fuentes gamma de alta actividad.
- Útil para policías y trabajadores de emergencia.
- Eficiencia gamma: 900 cps por μSv/h ²⁴¹Am.
- Eficiencia neutrones: 4,3 cps/20.000 n/s ²⁵²Cf.

Detectores de radiación muy pequeños

Reloj G-M

Teléfonos celulares con aplicación

ghostbusters

Resumen

- Siempre ejecute las mediciones con mucho cuidado.
- Nunca tome el desempeño de la instrumentación para garantizado.
- Compruebe regularmente el equipo.
- Asegure la calibración periódica.
- Mantenga su dosis ALARA.

Muchas gracias por vuestra atención y...

SE ABRE EL DEBATE

