

Radiation Measurements

- Introduction
- Why measure ?
- Gamma radiation
- Radionuclides in airborne dust
- Radon (²²²Rn and ²²⁰Rn) and their progeny
- Surface contamination
- Quality control
- Key messages

Why monitor?

- To identify existing levels
- To confirm that the radiation controls are in place and effective
- To identify elevated levels of radiation that require control
- To confirm other measurements that may be occurring (eg; regulatory check)
- For investigative purposes
- For licence conditions
- For dose assessment and epidemiology

When to monitor?

- As part of baseline characterisation
- As part of routine or regular monitoring program
- Randomly
- When problems arise
- As required by regulatory agency or when requested by workforce

Occupational Monitoring

- Monitor the exposure pathways
- Workers
 - Gamma radiation exposure
 - Inhalation of radionuclides in dust
 - Inhalation of decay products of radon and thoron
 - Ingestion of radionuclides

Uranium Mineral Sands Rare Earths NORM

General types of monitoring

Personal

- Workers wear the monitor
- Portable and practicable
- May not be able to sample everyone

Workplace

- Surveys in area
- Where personal monitoring in not practical
- Fixed locations (identifying trends)
- May be used for sampling a workgroup or activity

Gamma radiation

- NORM material emit gamma radiation and require monitoring
- Documented survey strategies are required
- Portable instruments can be used for routine workplace monitoring for external gamma radiation exposure
- Personal monitoring is carried out with active dosimeters (e.g. during maintenance activities) or passive dosimeters

IAEA

Gamma radiation

- Portable dose rate instruments:
 - Used for workplace and environmental monitoring
 - Dose rate can be displayed directly in μ Sv/h
 - Instruments with sensitive probes are capable of measuring down to background levels (0.05–0.1 μSv/h)

Gamma dose rate meters

- The detector characteristics must be chosen such that the energy response matches the energy of the radionuclides to be measured
- The detector must have a suitable response time to match the rate at which the dose rate varies
- The detector must be calibrated for the gamma ray energies of interest
- The detector must be sufficiently rugged for the environment in which it is to be used.
- Some instruments can identify the radionuclides present

Example of Instruments Energy Response

(From manufacturers documentation)

Gamma dose rate meters

- The instrument should be suitable for the application.
- An incorrect choice can lead to inaccurate or even erroneous assessments of the external hazard.
- Many different types
 Gas filled detectors
 - Ionisation chambers
 - Proportional counters
 - Geiger-Müller counters
 - Scintillation counters
 - Solid state detectors

Gamma dose rate meters

Survey monitors may have different scales:

- micro-Roentgens per hour (μR/hr)
 - amount of ionisation in air
- micro-Gray per hour (μGy/h)
 - absorbed dose in air
- micro-Sievert per hour (μSv/hr)
 - equivalent dose
- counts per second/minute

- Used for direct measurement of a workers exposure
- Integrates the dose rate over any period (for example, from 1 day up to 3 months)
- Can be attached to the clothing of the exposed worker
- Common types of dosimeter for exposure to NORM:
 - Thermo-luminescent dosimeters (TLDs)
 - Optically stimulated luminescent dosimeters (OSLDs)
- Direct reading dosimeters for higher dose rates:
 - Electronic dosimeters

Gamma dose rate meters – Personal Monitoring

MUST BE W	ORN & PETHERIES
A SHIFT	REFORMED AT END OF SHIFT
B SHIFT	
C SHIFT	
D SHIFT	SCANDOR IN
MAINTENANCE	
MAINTENANCE	
METALLURGIC	
MISCELLANEOUS	H IN

Radionuclides in airborne dust

- Airborne contamination can occur wherever dry materials are handled or processed
- Dust sampling involves taking a sample of air through a filter medium
- The sample is then analyzed for radionuclides
- Sampling needs to consider:
- $\circ~$ The occupancy time in the workplace
- $\,\circ\,$ The mass concentration of dusts
- The radionuclide activity concentration
- The size distribution and inhalation potential (sampler characteristics)

Types of Dust Sampling

IAEA

Workplace Sampling:

- Locations where workers are working
- The frequency of sampling will depend on the level of dust concentration and its variability
- May have fixed location sampling (for identifying trends)

Personal sampling:

- Allocation of sampler to a representative worker
- Consider number of workers involved in a task
- Consider tasks that contribute to exposure dust generation during work, job rotation, work shifts, special exposures
- Individual work practices
- Location and time in the workplace.

Sampling in practice – Locational sampling

Good Location

- Out of the way
- Good height (breathing zone height)

○ Safe

Poor Location

- \circ In the way
- Poor height
- Unsafe workplace hazard

Types of sampling equipment

Static air samplers:

- Place at fixed locations
- Can be high volume or low volumes sampler
- Indicator of workplace conditions

Personal air sampling:

- Provides measure of worker exposure
- Should be small and practical

Types of sampling equipment

Equipment for analysis of dust samples

Sampling the right dust

IAEA

Filter holders (sampling cassettes)

Radionuclides in airborne dust

Exercise: Where would you monitor dust?

Sampling equipment

Radon and Thoron

- Radon is a gas and it is chemically inert
 - If it is inhaled it does not accumulate in the lung
 - Resulting dose is quite small
 - Exposure occurs from the decay products present in the air
- Radon and thoron and transport mechanisms for the decay products
- Consider other factors such as;
 - Equilibrium factor
 - Unattached fraction
 - Particle size
- (Note that there is a more detailed lecture later)

Workplace radon progeny concentrations are variable

Concentrations by Time (uJ/m3)

Concentrations by Time (uJ/m3)

Radon and Thoron Monitoring

IAEA

• Passive monitoring

- Track etch
- Inexpensive and easy to use
- Can be used for personal, locational or environmental
- Gives an average for the exposure period

Active monitoring

- Air sampling ("radon sniffers")
- Sensitive equipment usually
- Needs to be calibrated (radon chamber)
- Can give either exposure averages or real time readings

Decay Progeny Monitoring

Grab sampling

- Various techniques
 - Take air sample and alpha count
 - Rolle, Borak, Kusnetz, environmental Rolle

Active monitoring

- Monitors that measure in real time
- Can be expensive, require calibration
- Able to differentiate between decay products
- Advantage is that monitoring identifies concentration variations

Equipment

IAEA

Measurement of radon

Radon monitoring in an underground mine using a portable continuous radon monitor with pulse-counting ionization chamber detector

() IAEA

Surface contamination

- Identify areas of removeable and non removeable contamination
- Monitor the actual surface contamination or take a wipe test for later analysis
- Wipe tests can be analysed for different radionuclides
- Also used to ensure that plant and equipment is free from contamination

- Alpha monitors may unsuitable for NORM contaminated items, especially when the surface is rough and/or non-flat:
 - Limited penetrating ability of alpha particles
 - Probe must be held within 5 mm of the contaminant layer
 - Self-absorption within the contaminant layer
 - The surface of the alpha probe is easily damaged
- Beta monitors are generally more suitable for NORM, but selfabsorption must still be taken into account
- Most beta detectors are sensitive to gamma radiation care is needed to ensure that ambient gamma is not misinterpreted as contamination
- The radiological characteristics of the NORM contaminating layer may have to be established in advance

Measurement of surface contamination

Two examples of a surface contamination monitor

Measurement of surface contamination

Contamination monitor with beta probe and alpha-beta dual probe

- For all measurement methods, instruments must be calibrated regularly and traceable to recognized national standards:
- Equipment should be maintained in good working order
- Not only radiation instruments also applies to pumps, mass balances.

Practical guide for radiation measurement

- Identify what measurements are to be taken
- Identify what instrument to use
- Pre-use check of any instruments.
- Ensure calibration
- Are there any special considerations such as access permits ?
- Make sure you are aware of any hazards or risks
- Check that personal protective equipment (PPE) is required
- Stow instruments and equipment securely and safely.

Practical guide for radiation measurement

- Make sure you know how to use the instrument
- Check that it is calibrated
- Conduct regular instrument checks and minor maintenance (e.g. battery changes) as required.
- Look and then take measurements at correct locations and times.
- Have some idea of what you are measuring
- Take a couple of measurements to ensure reliable data.
- If the results don't seem right, stop and work out why.
- Record data with the required precision, accuracy and units.
- Make notes of site conditions that might affect the data

- Record results in accordance with procedures
- Check that recorded outcomes are consistent with expectations.
- Compare results with relevant radiation limits and identify and record any significant differences.
- Identify any issues as a result of the monitoring
- Identify any improvements that could be made.
- Maintain records that are complete, accurate, legible and secure.

Key Messages

- Many aspects to monitoring
- Different consideration for workplace and personal monitoring
- Different considerations for the different types of radiation
- Need to understand what you want to measure
- Need to understand what the instrument is measuring
- Instruments must be fit for purpose
- Many equipment options
- Only use calibrated and maintained equipment