CS-52417 LIMTED DISTRIBUTION

WORKING MATERIAL

# INTEGRATION OF THE SIT WITH BIOCONTROL FOR GREENHOUSE AND OTHER CONFINED PEST INSECTS

# **REPORT OF THE CONSULTANTS' GROUP MEETING**

IAEA Headquarters, Vienna, Austria 14-18 March 2016

Reproduced by the IAEA Vienna, Austria, 2016

#### NOTE

The material in this document has been agreed by the participants and has not been edited by the IAEA. The views expressed remain the responsibility of the participants and do not necessarily reflect those of the government(s) of the designating Member State(s). In particular, neither the IAEA nor any other organization or body sponsoring this meeting can be held responsible for any material reproduced in the document.

### Table of contents

| 1 | I                      | Introduction1                                                           |  |  |  |  |  |  |  |  |
|---|------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 2 | ,                      | Working process                                                         |  |  |  |  |  |  |  |  |
|   | 2.1                    | L Listing of pests of confined areas1                                   |  |  |  |  |  |  |  |  |
|   | 2.2                    | 2 Evaluating pest species for SIT1                                      |  |  |  |  |  |  |  |  |
| 3 | l                      | Recommendation on storage pests8                                        |  |  |  |  |  |  |  |  |
| 4 | l                      | Recommendation on apicultural pests8                                    |  |  |  |  |  |  |  |  |
| 5 | I                      | Recommendation on livestock pests                                       |  |  |  |  |  |  |  |  |
| 6 | I                      | Identified plant pests with SIT potential in confined cropping systems9 |  |  |  |  |  |  |  |  |
|   | 6.1                    | Drosophila suzukii                                                      |  |  |  |  |  |  |  |  |
|   | 6.2                    | 2 Spodoptera and Helicoverpa group9                                     |  |  |  |  |  |  |  |  |
|   | 6.3                    | 3 Tuta and Neoleucinodes group10                                        |  |  |  |  |  |  |  |  |
| 7 | l                      | Irradiation11                                                           |  |  |  |  |  |  |  |  |
| 8 | (                      | Conclusions and Recommendations11                                       |  |  |  |  |  |  |  |  |
| 9 | I                      | References                                                              |  |  |  |  |  |  |  |  |
| 1 | C                      | Annexes                                                                 |  |  |  |  |  |  |  |  |
|   | An                     | nex 1: List of participants                                             |  |  |  |  |  |  |  |  |
|   | An                     | nex 2: Agenda                                                           |  |  |  |  |  |  |  |  |
|   | An                     | nex 3: Proposal for a Coordinated Research Project 21                   |  |  |  |  |  |  |  |  |
|   | Annex 4 Presentations  |                                                                         |  |  |  |  |  |  |  |  |
|   | Anabelle Firlej        |                                                                         |  |  |  |  |  |  |  |  |
|   | Tom Groot              |                                                                         |  |  |  |  |  |  |  |  |
|   | Lieselot van der Veken |                                                                         |  |  |  |  |  |  |  |  |
|   | ,                      | Wang Shaoli                                                             |  |  |  |  |  |  |  |  |
|   |                        | David Opatowski                                                         |  |  |  |  |  |  |  |  |

# 1 Introduction

Greenhouses and other confined locations provide ideal conditions for the rapid build-up of pest populations as they are largely protected from predators and parasitoids. Many of these pests have been exposed to high pesticide pressure over many generations, and resistance has developed in many of them. Biocontrol agents are widely used to combat these pests, but not all are well controlled with biocontrol agents and when a pest gets out of control it has to be controlled with pesticides, which then disrupts the biocontrol and pollination.

The SIT is compatible with biological control and can complement biocontrol for some of those pests that are difficult to control, reducing crop losses and pesticide residues in food.

Augmentative biological control has historically focused mainly on crops grown in confined areas. Recently there is more attention for crops grown outside. For SIT the opposite direction can be observed, historically SIT has focused on area wide pest management in open environments, but in the framework of this CRP it will be assessing the viability of integrating SIT to control some pests in confined areas such as greenhouses.

This expert meeting has focused on identifying the constraints on biocontrol in greenhouses and candidates where SIT may be integrated and supplement the current biocontrol and made recommendations for the establishment of the CRP.

# 2 Working process

This describes the strategic approach adopted by the expert committee to make recommendations about whether there is a need for a CRP in this area.

### 2.1 Listing of pests of confined areas.

We initiated with drawing up a list of major pests in confined environment, being mainly pests in greenhouse and tunnel crops, fruiting vegetables, soft fruits, ornamentals (See Table 1). Confined pests that still represent a bottleneck and therefore a disruptor of current biocontrol schemes (due to corrective chemical sprayings with broad spectrum PPPs) or that are less likely to be tackled by biocontrol due to their biology (e.g. Lepidoptera with scattered oviposition sites of single eggs, which would require highly efficient searcher parasitoids to control them) were identified.

The group notes that there are different levels of confinement and greenhouses tend to be less confined and less technical moving to warmer climates. Moving into warmer climates metallic structures with glass and high tech climate control and lighting make room for wooden or metal structures with plastic or mesh screens over it ("screenhouses", "mesh houses", "casa malla"). These structures are often open or opened up at the (end) sides whenever ventilation is required. Therefore, the group notes that from open field to confinement is a continuum rather than an absolute separation. Moving into more confined cropping systems it is to be expected to improve the efficacy of SIT or inherited sterility techniques because there is less immigration of fertile females.

### 2.2 Evaluating pest species for SIT

We evaluated if SIT could be a method of control for some major pests (see Table 2). The following parameters were considered:

**Table 1.** List of greenhouse, storage, livestock and beehive pests

| Pest scientific name          | Common name<br>of pest                 | Taxonomic group              | Host                                           | Vector Y/N               | Established<br>biological control | Excluded because                        |
|-------------------------------|----------------------------------------|------------------------------|------------------------------------------------|--------------------------|-----------------------------------|-----------------------------------------|
| Greenhouse pests              |                                        |                              |                                                |                          |                                   |                                         |
| Aculops                       | Tomato russet mite                     |                              | tomato                                         | Hirsutella<br>thompsonii | no                                | too small and arrhenotokous             |
| Anthonomus eugenii            | Pepper weevil                          | Coleoptera:<br>Curculionidae | pepper                                         |                          |                                   | adult feeding damage                    |
| Bactericera cockerelli        | Tomato psyllid                         | Hemiptera: Triozidae         | tomato                                         | Y                        |                                   | Vector                                  |
| Bemisia tabaci                |                                        | Hemiptera:<br>Aleyrodidae    | several                                        |                          |                                   | Vector                                  |
| Chrysodeixis chalcites        | golden twin-spot<br>moth               | Lepidoptera:<br>Noctuidae    | pepper tomato<br>banana                        |                          | no (eggs scattered)               |                                         |
| Drosophila suzukii            | spotted wing<br>drosophila             | Diptera: Drosophilidae       | soft fruits                                    |                          | no                                |                                         |
| Duponchelia fovealis          | Southern European<br>marshland pyralid | Lepidoptera:<br>Crambidae    | ornamentals                                    |                          | Bt?                               |                                         |
| Echinothrips                  |                                        | Thysanoptera:<br>Thripidae   | cut flowers                                    |                          |                                   | adult feeding damage ,<br>parthenogenic |
| Frankliniella<br>occidentalis | wft                                    | Thysanoptera:<br>Thripidae   | soft fruits, sweet<br>peppers, cut<br>flowers, |                          |                                   | adult feeding damage ,<br>parthenogenic |
| Halyomorpha halys             | brown marmorated<br>stink bug          | Hemiptera:<br>Pentatomidae   |                                                |                          |                                   | adult feeding damage                    |
| Helicoverpa armigera          | cotton bollworm                        | Lepidoptera:<br>Noctuidae    | polyphagous                                    |                          | Bt, Granulose virus               |                                         |
| Leafhoppers                   |                                        | Hemiptera:<br>Cicadellidae   | sweet peppers                                  | у                        |                                   | vector                                  |
| Lygus hesperus                |                                        | Hemiptera: Miridae           | cucumber                                       |                          |                                   | adult feeding damage                    |
| <i>Lyriomyza</i> spp.         | Leafminers                             | Diptera: Lyriomyzidae        |                                                |                          |                                   |                                         |
| Planococcus citri             |                                        | Hemiptera:<br>Pseudococcidae | tomato, sweet<br>pepper,                       |                          |                                   | parthenogenic?, male longivity 2d       |

| Pest scientific name         | Common name<br>of pest               | Taxonomic group               | Host                           | Vector Y/N | Established<br>biological control | Excluded because                                              |
|------------------------------|--------------------------------------|-------------------------------|--------------------------------|------------|-----------------------------------|---------------------------------------------------------------|
| Neoleucinodes<br>elegantalis | eggplant stem<br>borer, tomato borer | Lepidoptera:<br>Crambidae     | tomato, capsicum,<br>egg plant |            |                                   |                                                               |
| Nezara sp                    |                                      | Hemiptera:<br>Pentatomidae    |                                |            |                                   | adult feeding damage                                          |
| Scatella                     | Shore fly                            | Diptera: Ephydridae           |                                |            | yes                               |                                                               |
| Sciaridae                    | Fungus gnats                         | Diptera: Sciaridae            |                                |            | yes                               |                                                               |
| Scirtothrips mangiferae      | blueberry leaf<br>thrips             | Thysanoptera:<br>Thripidae    | soft fruits                    |            |                                   | adult feeding damage                                          |
| Spodoptera frugiperda        | fall armyworm                        | Lepidoptera:<br>Noctuidae     | polyphagous                    |            | Bt?                               |                                                               |
| Spodoptera exigua            | beet armyworm                        | Lepidoptera:<br>Noctuidae     | solanacea                      |            | Bt?                               |                                                               |
| Trialeuroides<br>vaporarium  | greenhouse<br>whitefly               | Hemiptera :<br>Aleyrodidae    | several                        | у          | yes                               |                                                               |
| Tuta absoluta                | Tomato leaf miner                    | Lepidoptera:<br>Gelechiidae   |                                |            | EU yes not elsewhere              |                                                               |
| Storage pests                |                                      |                               |                                |            |                                   |                                                               |
| Araecerus fasciculatus       | Coffee bean weevil                   | Coleoptera:<br>Anthribidae    | cassava:                       |            |                                   | adult feeding damage, digestive<br>duct radiation sensitivity |
| Cadra figulilela             | Dried fruit moth                     | Lepidoptera: Pyralidae        |                                |            |                                   |                                                               |
| Callosobruchus<br>chinensis  | Southern cowpea<br>beetle            | Coleoptera:<br>Chrysomelidae  |                                |            |                                   | adult feeding damage, digestive<br>duct radiation sensitivity |
| Callosobruchus<br>maculatus  | Cowpea beetle                        | Coleoptera:<br>Chrysomelidae  | pulses:                        |            |                                   | adult feeding damage, digestive<br>duct radiation sensitivity |
| Carpophilus dimidiatus       | Corn-sap beetle                      | Coleoptera: Nitidulidae       |                                |            |                                   | adult feeding damage, digestive<br>duct radiation sensitivity |
| Corcyra cephalonica          | Rice moth                            | Lepidoptera: Pyralidae        |                                |            |                                   |                                                               |
| Cryptolestes<br>ferrugineus  | Rusty grain beetle                   | Coleoptera:<br>Laemophloeidae |                                |            |                                   |                                                               |
| Cryptolestes pusillus        | Flat grain beetle                    | Coleoptera:<br>Laemophloeidae | paddy rice                     |            |                                   | adult feeding damage, digestive<br>duct radiation sensitivity |
| Cadra cautella               | Tropical warehouse<br>moth           | Lepidoptera: Pyralidae        |                                |            |                                   |                                                               |

| Pest scientific name         | Common name<br>of pest      | Taxonomic group                | Host        | Vector Y/N | Established<br>biological control              | Excluded because                                              |
|------------------------------|-----------------------------|--------------------------------|-------------|------------|------------------------------------------------|---------------------------------------------------------------|
| Lasioderrna serricorne       | Cigarette beetle            | Coleoptera: Anobiidae          |             |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Liposcelis entomophila       | Psocid                      | Psocodea:<br>Liposcelididae:   |             |            |                                                | adult feeding damage                                          |
| Lophocateres pusillus        | Siamese grain<br>beetle     | Coleoptera:<br>Trogossitidae   | paddy rice  |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Oryzaephilus<br>surinamensis | Saw-toothed grain<br>beetle | Coleoptera: Sylvanidae         |             |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Plodia interpunctella        | Indian flower moth          | Lepidoptera: Pyralidae         |             |            |                                                |                                                               |
| Rhyzopertha dominica         | Lesser grain borer          | Coleoptera:<br>Bostrichidae    |             |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Sitophilus oryzae            | Rice weevil                 | Coleoptera:<br>Dryophthoridae  | paddy rice: |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Sitophilus zeamais           | Maize weevil                | Coleoptera:<br>Dryophthoridae  | rice        |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Sitotroga cerealella         | Angoumois grain<br>moth     | Lepidoptera:<br>Gelechiidae    | paddy rice  |            |                                                |                                                               |
| Tribolium castaneum          | Red flour beetle            | Coleoptera:<br>Tenebrionidae   |             |            |                                                | adult feeding damage, digestive<br>duct radiation sensitivity |
| Phthorimaea<br>operculella   | Potato tuber moth           | Lepidoptera:<br>Gelechiidae    | potato      |            | Non commercial<br>baculovirus,<br>parasitoids? |                                                               |
| Animal husbandry             |                             |                                |             |            |                                                |                                                               |
| Musca domestica              | house fly                   | Diptera: Muscidae              | poultry     |            |                                                | adults vector or nuisance                                     |
| Fannia canicularis           | lesser house fly            | Diptera: Fanniidae             | poultry     |            |                                                | adults vector or nuisance                                     |
| Alphitobius diaperinus       | darkling beetle             | Coleoptera:<br>Tenebrionidae   | poultry     |            |                                                | adults vector or nuisance                                     |
| Hydrotaea aenescens          | black garbage fly           | Diptera: Muscidae              | poultry     |            |                                                | adults vector or nuisance                                     |
| Dermestes maculatus          | hide beetle                 | Coleoptera:<br>Curculionidae   | poultry     |            |                                                | adults vector or nuisance                                     |
| Ornithonyssus sp.            | fowl mite                   | Mesostigmata:<br>Macronyssidae | poultry     |            |                                                | adults vector or nuisance                                     |
| Dermanyssus galinae          | chicken mite                | Mesostigmata:<br>Dermanyssidae | poultry     |            |                                                | adults vector or nuisance                                     |

| Pest scientific name | Common name<br>of pest | Taxonomic group                 | Host    | Vector Y/N | Established<br>biological control | Excluded because               |
|----------------------|------------------------|---------------------------------|---------|------------|-----------------------------------|--------------------------------|
| Cimex lenticularius  | bed bug                | Hemiptera: Cimicidae            | poultry |            |                                   | adults vector or nuisance      |
| Menopon gallinae     | chicken lice           | Phthiraptera:<br>Menoponidae    | poultry |            |                                   |                                |
| Musca domestica      | house fly              | Diptera: Muscidae               | swine   |            |                                   | adults vector or nuisance      |
| Haematopinus suis    | Hog louse              | Phthiraptera:<br>Haematopinidae | swine   |            |                                   | adults vector or nuisance      |
| Stomoxys calcitrans  | stable fly             | Diptera: Muscidae               | swine   |            |                                   | adults vector or nuisance      |
|                      | ticks                  |                                 | cattle  |            |                                   | adults vector or nuisance      |
|                      | fly                    |                                 | cattle  |            |                                   | adults vector or nuisance      |
|                      | lice                   |                                 | cattle  |            |                                   | adults vector or nuisance      |
|                      | fleas                  |                                 | cattle  |            |                                   | adults vector or nuisance      |
| Beehive pests        |                        |                                 |         |            |                                   |                                |
| Aethina tumida       | Small hive beetle      | Coleoptera: Nitidulidae         | bees    | AFB vector |                                   |                                |
| Galleria mellonella  | wax moth               | Lepidoptera: Pyralidae          | bees    |            | good hive<br>management           |                                |
| Achroia grisella     | lesser wax moth        | Lepidoptera: Pyralidae          | bees    |            | good hive<br>management           |                                |
| Varroa destructor    | varroa mite            | Mesostigmata:<br>Varroidae      | bees    | у          |                                   | adults nuisance, arrhenotokous |

Potential candidates for SIT

### Table 2. List of species selected as potential candidates for SIT

| Pest scientific name         | Common<br>name pest                          | Taxonomical<br>group        | Distribution                    | Host                                                                      | Vector<br>Y/N | Established BC                              | Comments                     | SIT existing                     | Mass<br>rearing | Economic<br>importance      | References                                                                   |
|------------------------------|----------------------------------------------|-----------------------------|---------------------------------|---------------------------------------------------------------------------|---------------|---------------------------------------------|------------------------------|----------------------------------|-----------------|-----------------------------|------------------------------------------------------------------------------|
| Greenhouse pests             |                                              |                             |                                 |                                                                           |               |                                             |                              |                                  |                 |                             |                                                                              |
| Chrysodeixis chalcites       | Golden twin-<br>spot moth                    | Lepidoptera:<br>Noctuidae   | EU, MEA, new<br>US, CAN         | Solanaceae,<br>Ornemantals,<br>Cucurbitaceae,<br>Rosaceae                 |               | Bt, Podisus,<br>Trichogramma                | seperate<br>eggs             | no data<br>( <i>T.ni</i> )       |                 | 2                           |                                                                              |
| Drosophila suzukii           | Spotted wing<br>drosophila                   | Diptera:<br>Drosophilidae   | EU, US, S Am                    | Soft fruits                                                               |               | no                                          |                              | Part. bio<br>radiation           |                 | 1                           |                                                                              |
| Tuta absoluta                | Tomato<br>leafminer                          | Lepidoptera:<br>Gelechiidae | S Am, EU,<br>India              | Solenaceae                                                                |               | EU yes not<br>elsewhere                     |                              | No SIT, yes<br>bio-<br>radiation |                 | EU 3, L AM 2,<br>US 1, AS 2 | Cagnotti et al 2012                                                          |
| Neoleucinodes<br>elegantalis | eggplant stem<br>borer, tomato<br>borer      | Lepidoptera:<br>Crambidae   | C (Mexico) - S<br>Am            | Tomato,<br>capsicum,<br>eggplant                                          |               | no                                          | female<br>longevity of<br>6d | no data                          | YES             | L AM 2, rest 1              | Talekar et al 2002;<br>Blackmer 2001                                         |
| Helicoverpa armigera         | cotton<br>bollworm                           | Lepidoptera:<br>Noctuidae   | EU, MEA, S-<br>Am, AS, OC       | Polyphagous                                                               |               | Bt, Granulose<br>virus                      |                              | SIT and bio-<br>radiation        |                 |                             | Ocampo 2001; Pransopon<br>et al 2000                                         |
| Spodoptera<br>frugiperda     | fall armyworm                                | Lepidoptera:<br>Noctuidae   | Am (cont)                       | Polyphagous                                                               |               | Bt, Baculovirus,<br>EPN, Telonomus<br>remus |                              | No SIT, yes<br>bio-<br>radiation |                 |                             | Dos Santos et al 2009;<br>Polanczyk et al 2000; Van<br>lenteren & Bueno 2003 |
| Spodoptera exigua            | beet<br>armyworm                             | Lepidoptera:<br>Noctuidae   | Global except<br>S-Am           | Solanaceae,<br>Ornemantals,<br>Cucurbitaceae,<br>Rosaceae                 |               | Bt, NPV                                     |                              | SIT and bio-<br>radiation        |                 | 1                           | Debolt & Wright 1976                                                         |
| Duponchelia fovealis         | Southern<br>European<br>marshland<br>pyralid | Lepidoptera:<br>Crambidae   | MEA, S US,<br>CAN (ONT),<br>EU, | Ornementals,<br>Solenaceae,<br>Ornemantals,<br>Cucurbitaceae,<br>Rosaceae |               | Bt, EPN,<br>Trichogramma,<br>Soil mites     |                              | no data                          |                 |                             |                                                                              |
| Liriomyza spp.               | Leafminers                                   | Diptera:<br>Agriomyzidae    | Global                          | Solenaceae,<br>Ornemantals,<br>Cucurbitaceae                              |               | Diglyphus                                   | short male<br>longevity      | SIT and bio-<br>radiation        |                 |                             | Kaspi & Parrella 2006;<br>Walker 2012                                        |

| Pest scientific name       | Common<br>name pest           | Taxonomical<br>group        | Distribution | Host                  | Vector<br>Y/N | Established BC                                     | Comments                     | SIT existing      | Mass<br>rearing | Economic<br>importance | References                                |
|----------------------------|-------------------------------|-----------------------------|--------------|-----------------------|---------------|----------------------------------------------------|------------------------------|-------------------|-----------------|------------------------|-------------------------------------------|
| Storage pests              |                               |                             |              |                       |               |                                                    |                              |                   |                 |                        |                                           |
| Cadra figulilela           | Dried fruit<br>moth           | Lepidoptera:<br>Pyralidae   |              |                       |               |                                                    | SIT potential not applied    | Bio-<br>radiation | YES             |                        |                                           |
| Corcyra cephalonica        | Rice moth                     | Lepidoptera:<br>Pyralidae   |              |                       |               |                                                    | SIT potential not applied    | Bio-<br>radiation | YES             |                        |                                           |
| Cadra cautella             | Tropical<br>warehouse<br>moth | Lepidoptera:<br>Pyralidae   |              |                       |               |                                                    | SIT potential not applied    | Bio-<br>radiation | YES             |                        |                                           |
| Ectomyelois<br>ceratoniae  | Carob moth                    | Lepidoptera:<br>Pyralidae   |              | Date                  |               |                                                    | SIT potential not applied    | Bio-<br>radiation | YES             |                        |                                           |
| Phthorimaea<br>operculella | potato tuber<br>moth          | Lepidoptera:<br>Gelechiidae |              | Potato,<br>Solanaceae |               | No commercial<br>baculovirus,<br>parasitoids, SCLP |                              | Bio-<br>radiation | YES             |                        | Saour & Makee 2009                        |
| Plodia interpunctella      | Indian flower<br>moth         | Lepidoptera:<br>Pyralidae   |              |                       |               |                                                    | SIT potential not applied    | Bio-<br>radiation | YES             |                        |                                           |
| Sitotroga cerealella       | Angoumois<br>grain moth       | Lepidoptera:<br>Gelechiidae |              | Paddy rice            |               |                                                    | SIT potential not applied    | Bio-<br>radiation | YES             |                        |                                           |
| Animal husbandry           |                               |                             |              |                       |               |                                                    |                              |                   |                 |                        |                                           |
| Aethina tumida             | Small hive<br>beetle          | Coleoptera:<br>Nitidulidae  |              | Bees                  | AFB<br>vector | EPN                                                | 80 Gy;<br>longevity of<br>8d | Bio-<br>radiation |                 |                        | Downey et al 2015;<br>Schaefer et al 2010 |

Targeted candidates for SIT

- a. Pest distribution (continent/countries),
- b. Host range (major family of confined crops attacked),
- c. Biological control methods used and their effectiveness,
- d. Vector species yes or no?
- e. Reproduction (sexual-arrhenotokous-thelytokous),
- f. Plant parts attacked: marketable or non-marketable part,
- g. Availability of information on mass rearing,
- h. Availability on radiation biology or SIT data.

We took also into account the risk of pests invading new areas and the limitations to the use of the available natural enemies outside of their current range because of regulatory restrictions. Vectors of viruses or pests with a parthenogenetic reproduction were automatically discarded of the list because SIT will amplify the problem in the first case and for the second case SIT will be difficult to implement for species that do not rely on sexual reproduction. We ranked species from 1 to 3 in function of their economic importance based essentially on a, b, c and f criteria (1 = high economic importance; 2 = medium economic importance and 3 = poor economic importance). The final choice of potential candidates has been based on a discussion integrating economic importance and c, g and h criteria.

### 3 Recommendation on storage pests

The expert group recognized that among the discussed stored product pests the lepidopteran species appear to be suitable candidates for SIT/ inherited sterility. These species are generally easy to mass produce; in fact some are already mass produced as hosts and food for biocontrol agents. In addition, for most species information on the radiation biology is already available. Despite these potential opportunities, this technique has not been taken up widely for stored product pests. The expert group consists of experts on plant pests only and considers the stored products out of their expertise. For a critical review of the potential of SIT against stored product pests in confined areas the current expert group advises to consult other experts. These experts may be found from within the IOBC working group: integrated protection of stored products (https://www.iobc-wprs.org/expert groups/11 wg stored products.html). First questions these experts should consider is: why the potential for SIT/ inherited sterility has not been taken up.

# 4 Recommendation on apicultural pests

The expert group identified a single species that might be of interest for SIT in apiculture. This species being the small hive beetle *Aethina tumida*. Radiation biology for this species is known from Downey et al 2015 and Schaefer et al 2010. However, the expert group does not consider apiculture as part of their expertise. For a critical review of the potential of SIT against this species the expert group advises to consult experts on apiculture, preferably from an area where this species is present, such as North America (<u>http://www.uoguelph.ca/canpolin/ About/a research.html</u> for potential contacts).

### 5 Recommendation on livestock pests

The expert group has considered several species of pest to livestock in confined areas as stables and barns. Although livestock is not within the expertise of the expert group, no potential candidates for

SIT could be identified. All the species that were discussed are either vectors of diseases or are a nuisance. Therefore the release of large numbers of individuals, although sterilized, is considered undesirable.

### 6 Identified plant pests with SIT potential in confined cropping systems

Through the procedure described above, the expert group identified three groups of pests that show potential for SIT integration.

### 6.1 Drosophila suzukii

*Drosophila suzukii* (Diptera: Drosophilidae) is an exotic pest of stone fruits and berries that has recently invaded Europe (Italy, France, Belgium, Austria,...), North America (United states and Canada) and south America (Brazil). This species has now a worldwide distribution (Cini et al. 2012; Asplen et al. 2015). This pest attacks a wide range of soft fruits with preference for blueberry, strawberry and raspberry (Bellamy et al.2013), crops that can be grown in confined cropped systems. The female flies lay eggs under the skin of maturing fruits and the developing larvae feed on the fruit tissues, thereby provoking the fruit to collapse.

This pest is of economic importance because when left uncontrolled the flies can cause complete loss of the harvests. Currently the control relies mostly on the application of chemical insecticides that need to be applied a few days before the fruits are harvested and may cause a threat for the health of human consumers. In addition specific cultural practices such as mass trapping, netting and strict hygiene are being used. Research on natural enemies (predators and parasitoids) is ongoing, but no biological control solutions are readily available (Cuthbertson et al. 2014; Asplen et al. 2015; Renkema et al. 2015; Stacconi et al. 2015).

Radiation biology experiments are ongoing on *D. suzukii* in collaboration with FAO/IAEA, and several universities and research institutes. Artificial rearing diets for laboratory rearing are available in literature (Chabert et al. 2013) and at least two laboratories are conducting research on mass rearing under the Suzukill project that is a multidisciplinary and international research project funded by both the French ANR and the Austrian FWF (https://suzukill.univ-rennes1.fr/).. In addition, the IAEA has had recurrent requests from member countries about developing SIT for *D. suzukii*. The experts group has some reservations about the feasibility of SIT for this pest considering the high fecundity of this pest and the recurrent immigration of flies into the crops that, often, are not completely confined. Therefore, we recommend the involvement of an expert on the modelling of the population dynamics.

### 6.2 Spodoptera and Helicoverpa group

The expert group considered the *Spodoptera exigua*, *S. frugiperda* and *Helicoverpa armigera* species together as they share a similar biology. All three species are known as pests of both outdoor and important greenhouse crops such as tomato, peppers and eggplant. Biocontrol of these species relies on egg-parasitoids such as *Trichogramma* sp. or *Telenomus* sp. that are often insufficiently effective because of the short timespan to parasitize the eggs (Jarjees & Merritt, 2004). Also, the commercially available *Bacillus thuringiensis* strains appear to be insufficiently effective (Moar et al 1995; Polanczyk et al 2000; Omoto et al 2015).

For each of these species, SIT for area wide pest management has been developed in the past (Debolt & Wright, 1976; Ocampo, 2001; Carpenter et al., 1983; Carpenter et al., 1985; Carpenter et al., 1986; Carpenter et al., 1992; Hamm & Carpenter 1997; Pransopon et al 2000). However, these were never operational. The reasons why are not clear to the group and need to be looked into. The group does feel there are opportunities for SIT against these pests in confined area's that should be investigated.

Because of the past work on SIT, data on the rearing of these species and the radiation biology is available (Snow et al 1970; Snow et al 1972; Carpenter et al., 1997; Ramos Ocampo & Leon 2002; Merkx-Jacques & Bede 2005; Abbasi et al 2007). This would allow the research to quickly focus on demonstrating efficiency in the confined cropping systems. As the SIT for Lepidoptera usually relies on F1 sterility, a certain degree of damage needs to be tolerated. For fruit crops this tolerance is expected as the caterpillars primarily feed on the leaves, not on the fruits. On the other hand, the F1 sterility will result in increased numbers of sterile eggs in the crop. These eggs will improve the efficiency of egg parasitoids if these were to be combined with the SIT. If crop damage cannot be tolerated, full sterility (95-99%) rather than F<sub>1</sub> sterility can be used, but this reduces the efficiency of the control as high doses are required to reach full sterility.

Because of the similarities in the biology of these three species, a CRP that coordinates the research and allows for exchange of the results is expected to lead to strong synergisms.

#### 6.3 Tuta and Neoleucinodes group

Tuta absoluta (tomato leaf miner) and Neoleucinodes elegantalis (eggplant stem borer or tomato borer) are two emerging pests of Solanaceous crops of South-American origin (EPPO, 2005). Tuta absoluta has currently spread eastward into Europe as far as India and northward up to Mexico (Desneux et al. 2010). Following its introduction into Europe, North Africa and the Middle East, T. absoluta has already caused extensive economic damage (Tropea Garzia et al. 2012). The impact of the pest includes severe yield loss reaching 100%, increasing tomato prices, bans on the trade of tomato including seedlings, an increase in synthetic insecticide applications, disruption of integrated management programmes of other tomato pests, and an increase in the cost of crop protection. Considering its high biotic potential, its ability to adapt to various climatic conditions and the speed with which it has colonized Europe and North Africa, the potential invasion of African and especially Asian tomato crops by T. absoluta will probably impact heavily on the livelihood of local tomato growers and tomato agribusinesses in these regions. Tuta absoluta in Europe is currently sufficiently controlled by the predatory mirid bugs Nesidiocorus tenuis and Macrolophus pygmeus (Molla et al. 2009; Urbaneja et al. 2009). However, these invertebrate biocontrol agents, native to Europe, will not be an option for control when the pest reaches N. America or Asia, which is outside of the natural enemies' native ranges. Control of the pest in South America is currently based largely on chemical control. Therefore, development of a SIT for Tuta absoluta could provide a sustainable alternative. Radiation biology data for T. absoluta suggest doses of 200-250 Gy could be used to induce inherited sterility in *T. absoluta* males (Cagnotti et al. 2012).

*Neoleucinodes elegantalis* (tomato borer or eggplant stem borer) is a major pest of tomatoes and other Solanaceous fruit crops (e.g. *Solanum melongena* and *Capsicum* sp.) which occurs in South and Central America (Diaz Montilla et al. 2013). *Neoleucinodes elegantalis* is absent from other regions, but is considered a threat due to the importance of tomato and other Solanaceous fruit crops in

many other regions. It has been intercepted several times by the Netherlands (1 interception in 2009 and 3 in 2012) during import inspections of eggplant from Suriname and control of passenger baggage at Schiphol airport. Consequently, it has been added to the EPPO Alert List.

The objective of developing a SIT program for *T. absoluta* and *N. elegantalis* would be twofold; firstly providing a more sustainable control method for currently invaded areas where biocontrol is not yet developed and secondly providing an eradication method for these Solanaceous pests ready to use immediately a new area is invaded.

### 7 Irradiation

Application of SIT requires an irradiation system. Currently, the available irradiators of a suitable size for research, development and small scale production include both gamma and X irradiators.

Gamma irradiators have the advantage of reliability as the source, whilst constantly decaying, is always present and there is little to go wrong with the simple operating mechanism. Their disadvantages include the stringent regulatory, safety and security requirements for large radioactive sources, the potential risks associated with radiation and the need for periodic replenishment of the source. They can provide high dose rates (up to 200 Gy.min<sup>-1</sup>) but small self-shielded machines can only provide good dose uniformity to small volumes (typically little more than one litre per load). Small research irradiators are cheaper than equivalent X ray systems but the price rises quickly for larger processing volumes.

In contrast, X irradiators can be switched off, making transport easy, the regulatory burden much lighter, the risk associated with the radiation is much lower and there is no source to replenish. But these systems are much more complex requiring sophisticated maintenance and reliable power supply. X irradiators provide lower dose rates than gamma irradiators, typically around 10 Gy.min<sup>-1</sup> but to a larger volume per load (up to 18 litres) with good dose uniformity. Suitable X irradiators for SIT are still relatively new and so far have not yet shown themselves sufficiently reliable to be adopted in operational programmes. Improved quality control and reliability, rapid service response and availability of spare parts will be critical to the future success of these systems. X irradiators are generally rather more expensive than simple gamma irradiators, but could become more competitive if any unit established a market position. The absence of any radioactive material makes these systems more acceptable to the public.

The limited number of small, self-shielded irradiation units currently available and the cost of new units pose a risk to the development and small scale application of nuclear techniques in this field. For larger scale production irradiation services can be purchased from commercial irradiator operators, but the minimum practical dose from a multipurpose irradiator, the longer exposure times and poor control of dose and dose uniformity make this less satisfactory for SIT.

# 8 Conclusions and Recommendations

After literature review, knowledge exchange and extensive discussions, the expert group has produced a list of key pests that could be good candidates for SIT in confined cropping systems. Also, the group recommends contacting experts on storage pests and beehive pests to have a better idea of the SIT potential for these groups. The expert group recommends having a co-ordinated research project (CRP) and drafted a proposal for the three groups of pests identified: *Drosophila suzukii*,

*Spodoptera/Helicoverpa* and *Tuta/Neoleucinodes*. In view of the focus on greenhouse pests the proposed title is "Integration of the SIT with Biocontrol for Greenhouse Insect Pest Management".

#### 9 References

- ABBASI, B.H., K. AHMED, F. KHALIQUE, N. AYUB, H.J. Liu, S.A. RAZA KAZMI and M.N. AFTAB (2007). Rearing the cotton bollworm, *Helicoverpa armigera*, on a tapioca-based artificial diet. Journal of Insect Science 7:35.
- ASPLEN, M.K., G. ANFORA, A. BIONDI, D.S. CHOI, D. CHU, K.M. DAANE, P. GIBERT, A.P. GUTIERREZ, K.A. HOELMER and W.D. HUTCHISON (2015). Invasion biology of spotted wing Drosophila (*Drosophila suzukii*): a global perspective and future priorities. Journal of Pest Science 88(3):469-94.
- BELLAMY, D.E., M.S. SISTERSON and S.S. WALSE (2013). Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, *Drosophila suzukii*. PLoS One 8(4):e61227.
- BLACKMER, J.L., A.E. EIRAS and C.L. DE SOUZA (2001). Oviposition preference of *Neoleucinodes elegantalis* (Guenée) (Lepidoptera: Crambidae) and rates of parasitism by *Trichogramma pretiosum* Riley (Hymenoptera: Trichogrammatidae) on *Lycopersicon esculentum* in São José de Ubá, RJ, Brazil. Neotropical Entomology 30(1):89-95.
- CAGNOTTI, C.L., M.M. VISCARRET, M.B. RIQUELME, E.N. BOTTO, L.Z. CARABAJAL, D.F. SEGURA and S.N. LÓPEZ (2012). Effects of X-rays on *Tuta absoluta* for use in inherited sterility programmes. Journal of Pest Science 85(4):413-21.
- CARPENTER, J.E. and B.R. WISEMAN (1992). *Spodoptera frugiperda* (Lepidoptera: Noctuidae) development and damage potential as affected by inherited sterility and host plant resistance. Environmental Entomology 21:57-60.
- CARPENTER, J.E., HIDRAYANI, N. NELLY and B.G. MULLINIX (1997). Effect of substerilizing doses of radiation on sperm precedence in fall armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 90(2):444-8.
- CARPENTER, J.E., J.R. YOUNG and A.N. SPARKS (1985). Fall armyworm (Lepidoptera: Noctuidae): field survival of F<sub>1</sub> larvae from partially sterile parents. Florida Entomologist 68(2):290-6.
- CARPENTER, J.E., J.R. YOUNG and A.N. SPARKS (1986). Fall armyworm (Lepidoptera: Noctuidae): comparison of inherited deleterious effects in progeny from irradiated males and females. Journal of Economic Entomology 79(1):46-9.
- CARPENTER, J.E., J.R. YOUNG, E.F. KNIPLING and A.N. SPARKS (1983). Fall armyworm (Lepidoptera: Noctuidae): inheritance of gamma-induced deleterious effects and potential for pest control. Journal of Economic Entomology 76(2):378-82.
- CINI, A., C. IORIATTI and G. ANFORA (2012). A review of the invasion of *Drosophila suzukii* in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology 65(1):149-60.
- DEBOLT, J.W. and F.K. WRIGHT (1976). Beet armyworm: inherited sterility produced by irradiation of pupae or adults. Journal of Economic Entomology 69(3):336-8.

- DESNEUX, N., E. WAJNBERG, G. BURGIO, S. ARPAIA, K. WYCKHUYS, C. NARVÁEZ-VASQUEZ CA, J. GONZÁLEZ-CABRERA, D. CATALÁN-RUESCAS, E. TABONE, J. FRANDON, J.C. PIZZOL, C. PONCET and A. URBANEJA. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197–215.
- DIAZ MONTILLA, A.E., M.A. SOLIS and T. KONDO. 2013. The fruit borer, Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae), an insect pest of neotropical Solanaceous fruits, In J Peña (Ed.), Potential Invasive Pests of Agricultural Crops, CABI, London.
- DOS SANTOS, K.B., MENEGUIM, A.M., DOS SANTOS, R.B., DOS SANTOS, W.J., BOAS, G.V., DUMAS, V., MARTINS, E., PRAÇA, L.B., QUEIROZ, P., BERRY,C. and R. MONNERAT. 2009. Selection and characterization of the *Bacillus thuringiensis* strains toxic to *Spodoptera eridania* (Cramer), *Spodoptera cosmioides* (Walker) and *Spodoptera frugiperda* (Smith) (Lepidoptera: Noctuidae). Biological Control 50(2): 157–163.
- DOWNEY, D., S. CHUN and P. FOLLETT (2015). Radiobiology of small hive beetle (Coleoptera: Nitidulidae) and prospects for management using sterile insect releases. Journal of Economic Entomology 108(3):868-72.
- EIRAS, A.E. and J.L. BLACKMER (2003). Eclosion time and larval behavior of the tomato fruit borer, *Neoleucinodes elegantalis* (Guenée) (Lepidoptera: Crambidae). Scientia Agricola 60(1):195-7.
- EPPO. 2005. Data sheets on quarantine pests: Tuta absoluta. Bulletin OEPP/EPPO Bulletin 35, 434–435.
- HAMM, J.J. and J.E. CARPENTER (1997). Compatibility of nuclear polyhedrosis viruses and inherited sterility for control of corn earworm and fall armyworm (Lepidoptera: Noctuidae). Journal of Entomological Science 32:148-53.
- JARJEES, E.A. and D.J. MERRITT (2004). The effect of parasitization by *Trichogramma australicum* on *Helicoverpa armigera* host eggs and embryos. Journal of Invertebrate Pathology 2004, 85(1):1-8.
- KASPI, R. and M. PARRELLA (2006). Improving the biological control of leafminers (Diptera: Agromyzidae) using the sterile insect technique. Journal of Economic Entomology 99(4):1168-75.
- MAKEE, H. and G. SAOUR. 2003. Noninherited sterility in irradiated *Phthorimaea operculella* females. Journal of Applied Entomology 127(9-10): 489–493
- MERKX-JACQUES, M. and J.C. Bede (2005). Influence of diet on the larval beet armyworm, *Spodoptera exigua*, glucose oxidase activity. Journal of Insect Science 5: 48.
- MOAR, W.J., M. PUSZTAI-CAREY, H. VAN FAASSEN, D. BOSCH, R. FRUTOS, C. RANG, K. LUO and M.J. ADANG (1995). Development of *Bacillus thuringiensis* CryIC Resistance by *Spodoptera exigua* (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 61(6): 2086-92.
- MOLLÁ, Ó., H. MONTÓN, P. VANACLOCHA, F. BEITIA and A. URBANEJA. 2009. Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. Proceedings of the IOBC/WPRS Working Group "Integrated Control in Protected Crops", Crete, Greece, 6-11 September 2009. IOBC/WPRS Bulletin 2009 Vol. 49 pp. 209-214

- OCAMPO, V.R. (2001). Effect of a substerilizing dose of radiation on the mating competitiveness of male and on the mating propensity of female *Helicoverpa armigera* (Lepidoptera: Noctuidae). Florida Entomologist 84(2):194-8.
- OMOTO, C., O. BERNARDI, E. SALMERON, R.J. SORGATTO, P.M. DOURADO, A. CRIVELLARI, R.A. CARVALHO, A. WILLSE, S. MARTINELLI, and G. P. HEAD (2015). Field-evolved resistance to Cry1Ab maize by *Spodoptera frugiperda* in Brazil. Pest Management Science doi: 10.1002/ps.4201.
- POLANCZYK, R.A., R.R.F.P.D. SILVA and L.M. FIUZA (2000). Effectiveness of Bacillus thuringiensis strains against *Spodoptera frugiperda* (Lepidoptera: Noctuidae). Brazilian Journal of Microbiology 31(3):164-6.
- PRANSOPON, P., M. SUTANTAWONG, P. HORMCHAN and A. WONGPIYASATID (2000). Effects of gamma radiation on mature pupae of the cotton bollworm, *Helicoverpa armigera* (Hübner) and their F1 progeny. Kasetsart Journal, Natural Sciences 34(3):401-7.
- RAMOS OCAMPO, V., J.B.D. LEON (2002). *The effects of radiation on the biology and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae),* Evaluation of Lepidoptera Population Suppression by Radiation Induced Sterility. IAEA, pp. 29-36.
- SAOUR, G. and H. MAKEE (1997). Radiation induced sterility in male potato tuber moth *Phthorimaea operculella* Zeller (Lep., Gelechiidae). Journal of Applied Entomology 121(7):411-5.
- SAOUR, G. and H. MAKEE (1999). Effect of gamma irradiation on sperm utilization in twice-mated female *Phthorimaea opercullella* Zeller (Lep., Gelechiidae). Journal of Applied Entomology 123(9):513-7.
- SCHÄFER, M.O., RITTER, W., PETTIS, J. and P. NEUMANN. 2010. Small hive beetles, *Aethina tumida*, are vectors of *Paenibacillus larva*. Apidologie 41(1): 14–20.
- SNOW, J.W., J.R. YOUNG and R.L. JONES (1970). Competitiveness of sperm in female fall armyworms mating with normal and chemosterilized males. Journal of Economic Entomology 63(6):1799-802.
- SNOW, J.W., J.R. YOUNG, W.J. LEWIS and R.L. JONES (1972). Sterilization of adult fall armyworms by gamma irradiation and its effect on competitiveness. Journal of Economic Entomology 65(5):1431-3.
- TALEKAR, N.S. (2002). Controlling Eggplant Fruit and Shoot Borer. AVRDC, 02-534. Asian Vegetable Research and Development Center.
- TROPEA GARZIA, G., A. SISCARO, L. BIONDI and L. ZAPPALA. 2012. Tuta absoluta, a South American pest of tomato now in the EPPO region: biology, distribution and damage. Bulletin OEPP/EPPO Bulletin 42 (2): 205–210.
- URBANEJA, A., H. MONTÓN and O. MOLLÁ. 2009. Suitability of the tomato borer Tuta absoluta as prey for *Macrolophus pygmaeus* and *Nesidiocoris tenuis*. Journal of Applied Entomology 133, 292–296
- VAN LENTEREN, J.C. and V.H. BUENO (2003). Augmentative biological control of arthropods in Latin America. BioControl 48(2):123-39.

WALKER, C.S. (2012). The application of sterile insect technique against the tomato leafminer *Liriomyza bryoniae*. Imperial College London.

# 10 Annexes

| Tom GROOT              | Koppert B.V.<br>Veilingweg 14<br>2651 BE Berkel en Rodenrijs<br>The Netherlands<br>Tel: +31 10 514 04 44<br>Mob: +31 6 231 336 34<br>Fax: + 31 10 511 52 03                                 | tgroot@Koppert.nl             |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Annabelle FIRLEJ       | IRDA,<br>Siège social,<br>2700, rue Einstein,<br>Québec G1P 3W8,<br>Canada                                                                                                                  | annabelle.firlej@irda.qc.ca   |
| Lieselot VAN der VEKEN | Biobest<br>Ilse Velden 18<br>2260 Westerlo<br>Belgium<br>Tel: +32 14 257 980<br>Fax: +32 14 257 982                                                                                         | <u>Lieselot@biobest.be</u>    |
| WANG Shaoli            | Institute of Vegetables and Flowers<br>Chinese Academy of Agricultural<br>Science<br>No.12 Zhongguancun South Street<br>Beijing 100081, China<br>Tel: 86-10-82109518<br>Fax: 86-10-82109518 | wangshaoli@caas.cn            |
| David OPATOWSKI        | Minister – Counsellor Agricultural<br>Affairs<br>Permanent Mission of Israel to te U.N.<br>& International Organizations<br>1-3 avenue de la Paix<br>1202 Geneva, Switzerland               | agriculture@Geneva.mfa.gov.il |

#### Annex 2: Agenda

#### Monday 14 March [M0E58]

| 08:00          | - | 09:00          |                               | Registration (Bring passport / ID papers and collect security pass from Gate 1 on arrival)                                                                   |
|----------------|---|----------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09:00          | - | 09:30          | Andrew Parker                 | Welcome<br>Introduction of the participants<br>Selection of meeting chairman and rapporteur<br>Background and objectives of the consultants group<br>meeting |
| 09:30          | - | 10:00          | Bashur Bashur                 | The IAEA Programme of Coordinated Research<br>Activities                                                                                                     |
| 10:00          | - | 10:30          |                               | Coffee break                                                                                                                                                 |
| 10:30<br>11:15 |   | 11:15<br>12:00 | Annabelle Firlej<br>Tom Groot | Title to be announced<br>On augmentative biocontrol and SIT                                                                                                  |
| 12:00          | - | 13:30          |                               | Lunch                                                                                                                                                        |
| 13:30          | - | 14:15          | Lieselot van der Veken        | Options from biological control for pest control;<br>experiences, prospects and regulatory framework                                                         |
| 14:15          | - | 15:00          | Wang Shaoli                   | Occurrence and Control of Insect Pests on<br>greenhouse vegetables in China                                                                                  |
| 15:00          | _ | 15:30          |                               | Coffee break                                                                                                                                                 |
| 15:30          |   | 16:15          | David Opatowski               | Feasibility study for the implementation of leafminer<br>(Liriomyza spp.) SIT combined with biological control<br>under greenhouse conditions in Israel      |
| 16:15          | _ | 17:00          | Discussion of presentation    | -                                                                                                                                                            |

#### Tuesday 15 March [A2172]

08:30 – 10:30 Group discussions. Suggested topics:

- Discussion of presentations
- Constraints to biocontrol in greenhouses and confined areas
- Poorly controlled pests
- New and invasive pests
- Opportunities for integration of SIT
- 10:30 11:00 **Coffee break**
- 11:00 12:30 Group discussions continued
- 12:30 13:45 Lunch
- 13:45 15:15 Group discussions continued

|  | 15:15 | _ | 15:45 | Coffee | break |
|--|-------|---|-------|--------|-------|
|--|-------|---|-------|--------|-------|

15:45 – 17:00 CRP proposal design

#### Wednesday 16 March [A2172]

- 08:30 10:30 Identification of areas of research
- 10:30 11:00 **Coffee break**
- 11:00 12:30 Identification of areas of research continued
- 12:30 13:45 Lunch
- 13:45 15:15 Group discussions
- 15:15 15:45 **Coffee break**
- 13:45 17:15 Decision on meeting recommendations regarding requirements, scope and objectives for a CRP.
- 19:30 **DINNER**

#### Thursday 17 March [A2172]

- 09:00 10:30 Drafting of CRP proposal
- 10:30 11:00 **Coffee break**
- 11:00 12:30 Drafting of CRP proposal
- 12:30 13:45 Lunch
- 13:45 15:15 Drafting of CRP proposal
- 15:15 15:45 **Coffee break**
- 15:45 17:00 Preparation of logical framework

#### Friday 18 March [M0E59]

- 09:00 10:30 Identification of potential contract and agreement holders
- 10:30 11:00 **Coffee break**
- 11:00 12:30 Drafting of meeting report
- 12:30 13:45 Lunch
- 13:45 15:15 Drafting of meeting report

#### 15:15 – 15:45 **Coffee break**

- 15:45 17:00 Presentation of Meeting Conclusions and Outcome
- 17:00 End of the meeting

#### Annex 3: Proposal for a Coordinated Research Project

### **Title of CRP**

Integration of the SIT with Biocontrol for Greenhouse Insect Pest Management

### **Brief Summary**

This CRP will develop and evaluate SIT for insect pests in greenhouses. The CRP will focus on three groups of species that are disruptive to current biocontrol practices, or are expected to become serious pest when invading new areas. The three groups are *Drosophila suzukii*, *Helicoverpa/Spodoptera* spp. and *Tuta absoluta/Neoleucinodes elegantalis*. The background information required for SIT, such as mass rearing and radiation biology, has been developed for these greenhouse pests to a variable extent. However, for all of these groups the application in confined areas still needs to be refined and evaluated.

### 1. Background Situation Analysis (Rationale/Problem)

#### a. Current situation

Greenhouses and other confined locations provide ideal conditions for the rapid build-up of pest populations as they are largely protected from predators and parasitoids. Many of these pests have been exposed to high insecticide pressure over many generations and resistance has developed in many of them. Biocontrol agents are widely used to combat these pests, but not all are well controlled with biocontrol agents and when a pest gets out of control it has to be controlled with pesticides, which then disrupts other biocontrol and pollination.

The SIT is compatible with biological control and can complement biocontrol for those pests that are otherwise difficult to control, reducing crop losses, pesticide residues in food and risk to workers.

Augmentative biological control has historically focused mainly on crops grown in confined areas. Recently there is more attention for crops grown outside. For SIT the opposite direction can be observed: historically SIT has focused on area wide pest management, but with this CRP SIT will now enter confined areas such as greenhouses.

#### b. Drosophila suzukii:

*Drosophila suzukii* (Diptera: Drosophilidae) is an exotic pest of stone fruits and berries that has recently invaded Europe (Italy, France, Belgium, Austria,...), North America (United States and Canada) and South America (Brazil). This species now has a worldwide distribution (Cini et al. 2012; Asplen et al. 2015). This pest attacks a wide range of soft fruits with preference for blueberry, strawberry and raspberry (Bellamy et al. 2013), crops that can be grown in confined cropped systems. The female flies lay eggs under the skin of maturing fruits and the developing larvae feed on the fruit tissues thereby causing the fruit to collapse.

This pest is of economic importance because when left uncontrolled the flies can cause complete loss of the harvests. Currently the control relies mostly on the application of chemical insecticides that need to be applied a few days before the fruits are harvested and may cause a threat for the health of human consumers. In addition specific cultural practices such as mass trapping, netting and strict hygiene are being used. Research on natural enemies (predators and parasitoids) is ongoing, but no biological control solutions are readily available (Cuthbertson et al. 2014; Asplen et al. 2015; Renkema et al. 2015; Stacconi et al. 2015).

Radiation biology experiments are ongoing on *D. suzukii* in collaboration with FAO/IAEA, and several universities and research institutes. Artificial rearing diets for laboratory rearing are available in the literature (Chabert et al. 2013) and at least two laboratories are conducting research on mass rearing under the Suzukill project that is a multidisciplinary and international research project funded by both the French ANR and the Austrian FWF (https://suzukill.univ-rennes1.fr/). In addition, the FAO/IAEA has had recurrent requests from member countries about developing conventional SIT for *D. suzukii*.

### c. Spodoptera and Helicoverpa group

*Spodoptera exigua, S. frugiperda* and *Helicoverpa armigera* (Lepidoptera: Noctuidae) share a similar biology. All three species are known as pest of both outdoor crops and of important greenhouse crops such as tomato, peppers and eggplant. Biocontrol of these species relying on egg-parasitoids such as *Trichogramma* sp. (Hymenoptera: Trichogrammatidae) or *Telenomus* sp. (Hymenoptera: Scelionidae) are often insufficiently effective because of the short timespan to parasitize the eggs (Jarjees & Merritt, 2004). Also, the commercially available *Bacillus thuringiensis* strains appear to be insufficiently effective (Moar et al 1995; Polanczyk et al 2000; Omoto et al 2015).

For each of these species, SIT for area wide pest management has been developed in the past (Debolt & Wright, 1976; Ocampo, 2001; Carpenter et al., 1983, 1985, 1986, 1992; Hamm & Carpenter 1997; Pransopon et al 2000). However, these were never operationalized.

Because of the past work on SIT, data on the rearing of these species and the radiation biology is available (Snow et al 1970; Snow et al 1972; Carpenter et al., 1997; Ramos Ocampo & Leon 2002; Merkx-Jacques & Bede 2005; Abbasi et al 2007). This will allow the research to quickly focus on demonstrating efficiency in greenhouses. Because the SIT for Lepidoptera normally relies on F<sub>1</sub> sterility, a certain degree of damage needs to be tolerated. For fruit crops this tolerance is expected as the caterpillars primarily feed on the leaves, not on the fruits. On the other hand, the F<sub>1</sub> sterility will result in increased numbers of sterile eggs in the crop. These eggs will improve the efficiency of egg parasitoids if these were to be combined with the SIT. If crop damage is not tolerable, full sterility can be considered but the high doses necessary reduce the efficacy of the control.

Because of the similarities in the biology of these three species, a CRP that coordinates the research and allows for exchange of the results is expected to lead to strong synergisms.

### d. Tuta and Neoleucinodes group

*Tuta absoluta* (tomato leaf miner) (Lepidoptera: Gelechiidae) and *Neoleucinodes elegantalis* (eggplant stem borer or tomato borer) (Lepidoptera: Crambidae) are two emerging pests of Solanaceous crops of South-American origin (EPPO, 2005). *Tuta absoluta* has currently spread eastward through Europe as far as India and northward up to Mexico (Desneux et al. 2010). Following its introduction into Europe, North Africa and the Middle East, *T. absoluta* has already caused extensive economic damage (Tropea Garzia et al. 2012). The impact of the pest includes severe yield loss reaching 100%, increasing tomato prices, bans on the trade of tomato including seedlings, an increase in synthetic insecticide applications, disruption of integrated management programmes of other tomato pests, and an increase in the cost of crop protection. Considering its

high biotic potential, its ability to adapt to various climatic conditions and the speed with which it has colonized Europe and North Africa, the potential invasion of African and especially Asian tomato crops by *T. absoluta* will probably impact heavily on the livelihood of local tomato growers and tomato agribusinesses in these regions (BBC 2016). *Tuta absoluta* in Europe is currently sufficiently controlled by the predatory mirid bugs *Nesidiocorus tenuis* and *Macrolophus pygmeus* (Heteroptera: Miridae) (Molla *et al.* 2009; Urbaneja *et al.* 2009). However, these invertebrate biocontrol agents, native to Europe, will not be a control option when the pest reaches North America or Asia, which are outside of the natural enemies' native ranges. Control of the pest in South America is currently based largely on chemical control. Therefore, development of SIT for *Tuta absoluta* could provide a sustainable alternative. Radiation biology data for *T. absoluta* suggest doses of 200–250 Gy could be used to induce inherited sterility in *T. absoluta* males (Cagnotti *et al.* 2012).

*Neoleucinodes elegantalis* (tomato borer or eggplant stem borer) is a major pest of tomatoes and other Solanaceous fruit crops (e.g. *Solanum melongena* and *Capsicum sp.*) which occurs in South and Central America (Diaz Montilla *et al.* 2013). *N. elegantalis* is absent from other regions, but is considered a threat due to the importance of tomato and other Solanaceous fruit crops in many other regions. It has been intercepted several times by the Netherlands (1 interception in 2009 and 3 in 2012) during import inspections of eggplant from Suriname and control of passenger baggage at Schiphol airport. Consequently, it has been added to the EPPO Alert List.

The objective of developing a SIT program for *T. absoluta* and *N. elegantalis* is twofold; firstly providing a more sustainable control method for currently invaded areas where biocontrol is not yet developed and secondly provide an eradication method for these Solanaceous pests in the event they invade new areas.

### 2. Overall Objective

The overall objective is to advance development and implementation of SIT for integration with other biocontrol in greenhouses.

### 3. Specific Research Objective (Purpose)

- To adapt SIT and inherited sterility for *Spodoptera/Helicoverpa* species for confined cropping systems
- To develop SIT for Drosophila suzukii
- To develop SIT and inherited sterility for Tuta absoluta and Neoleucinodes elegantalis

### 4. Expected Research Outputs

- 1. Survey on factors inhibiting the adoption of SIT and inherited sterility for *Spodoptera/Helicoverpa* group
- 2. Feasibility study on SIT and inherited sterility for *Spodoptera/Helicoverpa* group in confined cropping systems
- 3. Radiation biology for *D. suzukii*
- 4. Sexing system for D. suzukii
- 5. Mass rearing for *D. suzukii*
- 6. Feasibility study for *D. suzukii* in confined cropping systems
- 7. Radiation biology T. absoluta and N. elegantalis

- 8. Sexing system for *T. absoluta* and *N. elegantalis*
- 9. Mass rearing for *T. absoluta* and *N. elegantalis*
- 10. Feasibility study for T. absoluta and N. elegantalis in confined cropping systems

#### 5. Expected Research Outcomes

*Outcome 1:* SIT and inherited sterility techniques for the targeted pest species ready for implementation in confined cropping systems

*Outcome 2:* SIT and inherited sterility techniques for the targeted pest species adopted in confined cropping systems

## 6. Relationship to Sub-programme objective and other Agency Programmes and Sub-programmes

• IPCS develops and promotes the use of nuclear techniques for the control of insect pests.

#### 7. Action Plan (Activities)

- Activity 1. Submit CRP proposal.
- Activity 2. Announce project to MS and amongst established entomologists, biocontrol and pest control specialists and commercial glasshouse growers.
- Activity 3. Organize first RCM to plan, coordinate and review research activities
- Activity 4. Carry out R&D.
- Activity 5. Second RCM to analyse data and draft technical protocols as required
- Activity 6. Hold workshop on "Insect mass rearing", in conjunction with second RCM.
- Activity 7. Continue R&D.
- Activity 8. Review the CRP after its third year.
- Activity 9. Convene third RCM to evaluate and standardize protocols.
- Activity 10. Hold workshop on "Irradiation and dosimetry", in conjunction with third RCM.
- Activity 11. Continue R&D.
- Activity 12. Hold final RCM to review data and reach consensus.
- Activity 13. Evaluate the CRP and submit evaluation report.
- Activity 14. Summarize and publish advances of CRP in a series of joint publications (special issue of a scientific journal).

#### 8. Inputs

- 1. Duration: 5 years.
- 2. Number of RCMs: 4.
- Contracts and agreements: Technical contract: 1 (1 year) Agreement holders: 9. Research contract holders: 9.

- 4. Workshops:
  - Insect mass rearing for pests of confined cropping systems (*D. suzukii*) and irradiation protocols (with 2<sup>nd</sup> RCM)
  - Insect mass rearing for pests of confined cropping systems (Lepidoptera) and irradiation protocols (with 3<sup>nd</sup> RCM)
- 5. Publication of results (special journal issue).
- 6. Staff travel of SS to RCMs

#### 9. Assumptions

• Continued relevance of SIT for *Drosophila suzukii*, *Tuta absoluta*, *Neoleucinodes elegantalis* and *Spodoptera/Helicoverpa* species.

#### **10.** Foreseen Participants

### Countries with significant greenhouse industries

| Country       | Institute                     | Contact        |                                      |
|---------------|-------------------------------|----------------|--------------------------------------|
| Australia     | Horticulture Innovation       | David Moore    | david.moore@horticulture.com.au      |
|               | Australia Limited             |                |                                      |
| Australia     | South Australian Research and | Peter Crisp    | peter.crisp@sa.gov.au                |
|               | Development Institute         |                |                                      |
| Belgium       | Biobest NV                    | Felix Wäckers  | Felix.wackers@biobest.be             |
| Belgium       | IBMA Global                   | David Cary     | david.cary@ibma-global.org           |
| Belgium       | Trial Centre Ornamentals      | Bruno Gobin    | bruno.gobin@pcsierteelt.be           |
| Belgium       | Trial Centre Soft fruit       | Yves Hendricks | proefcentrum.pamel@vlaamsbrabant.be  |
|               | Production                    |                |                                      |
| Belgium       | Trial Centre Vegetable        | Raf De Vis     | Raf.de.vis@proefstation.be           |
|               | Production                    |                |                                      |
| Canada        | IRDA                          | Annabelle      | Annabelle.firlej@irda.qc.ca          |
|               |                               | Firlej         |                                      |
| Canada        | Vineland research and         | Roos           | rose.buitenhuis@vinelandresearch.com |
|               | innovative centre             | Buithentuis    |                                      |
| China         | Chinese Academy of            | Shaoli Wang    | wangshaoli@caas.cn                   |
|               | Agricultural Sciences         |                |                                      |
| China         | Fujian Agriculture and        | Qing'e Ji      | jiqinge@yeah.net                     |
|               | Forestry University           |                |                                      |
| China         | University of Science and     | Junfeng Dong   | junfengdong@126.com                  |
|               | Technology                    | Henan          |                                      |
| Eu-           | EPPO (Regional IPPC)          | Martin Ward    | martin.ward@eppo.int                 |
| Mediterranean |                               |                |                                      |
| France        | INRA                          | Marylène       | Marylene.Poirie@sophia.inra.fr       |
|               |                               | Poirié         |                                      |
| France        | Université de Rennes 1        | Hervé Colinet  | herve.colinet@univ-rennes1.fr        |
|               |                               | Hervé          |                                      |
| Germany       | LOEWE-Centre                  | Marc Schetelig | marc.schetelig@agrar.uni-giessen.de  |
| Israel        | Biobee                        | Shimon         | s_stein@biobee.com                   |
|               |                               | Steinberg      |                                      |
| Israel        | Minister-Counsellor           | David          | agriculture@geneva.mfa.gov.il        |
|               | agricultural affairs          | Opatowski      |                                      |
| Italy         | Research and Innovation       | Gianfranco     | gianfranco.anfora@fmach.it           |
|               | Centre                        | Anfora         |                                      |
| Japan         | Ibaraki University            | Tetsuo Gotoh   | gotoh@mx.ibaraki.ac.jp               |
|               |                               |                |                                      |

#### Developed countries with capabilities for SIT or greenhouse crop research

| Netherlands  | Koppert                  | Tom Groot     | tgroot@Koppert.nl                  |
|--------------|--------------------------|---------------|------------------------------------|
| Netherlands  | Wageningen               | Marcel Dicke  | marcel.dicke@wur.nl                |
| Spain        | Instituto Valenciano de  | Alberto       | <u>aurbaneja@ivia.es</u>           |
|              | Investigaciones Agrarias | Urbaneja      |                                    |
| Spain        | IRTA                     | Oscar Alomar  | <u>oscar.alomar@irta.cat</u>       |
| EnglandUK    | The Food and Environment | Andrew        | andrew.cuthbertson@fera.gsi.gov.uk |
|              | Research Agency          | Cuthbertson   |                                    |
| USA          | NC State University      | Hannah        | hannah_burrack@ncsu.edu            |
|              |                          | Burrack       |                                    |
| USA          | UC Davis                 | Joanna Chiu   | jcchiu@ucdavis.edu                 |
| USA          | USDA                     | Jana Lee      | jana.lee@ars.usda.gov              |
| USA (Hawaii) | USDA                     | Peter Follett | Peter.Follett@ars.usda.gov         |

### Developing countries with capabilities for SIT or greenhouse crop research

| Country             | Institute                                                  | Contact                        |                                 |
|---------------------|------------------------------------------------------------|--------------------------------|---------------------------------|
| Argentina           | CEPAVE CONICET & UNLP                                      | M. G. Luna                     | lunam@cepave.edu.ar             |
| Argentina           | Instituto de Genética, INTA                                | Jorge L. Cladera               | jcladera@cnia.inta.gov.ar       |
| Argentina           | ISCAMEN (Bioplanta) Mendoza                                | Andrea<br>Bartolucci           | procem@iscamen.com.ar           |
| Argentina           | PROIMI – Biotecnología, Div.<br>Control Biológico. CONICET | E. Virla                       | evirla@gmail.com                |
| Brazil              | University of Sao Paulo                                    | Jose Bento                     | jmsbento@usp.br                 |
| Colombia            | Corporación Colombiana de<br>Investigación Agropecuaria    | Ana Elizabeth<br>Diaz Montilla | anadiaz@telesat.com.co          |
| Colombia            | Finca Experimental San Juanita                             | Andres Saenz                   | asaenz@saenzfety.com            |
| Colombia            | ICA (Instituto Colombiano<br>Agropecuario-NPPO)            | Jose Roberto<br>Galindo        | Roberto.galindo@ica.gov.co      |
| Comunidad<br>Andina | CA (Comunidad Andina- Regional<br>IPPC)                    | Camilo Beltran                 | cbeltran@comunidadandina.org    |
| ConoSUR             | Comite Regional de Sanidad<br>Vegetal del Cono Sur         | Luis Rangel                    | luis.rangel@agricultura.gov.br  |
| Ecuador             | Agrocalidad (NPPO) Sanidad<br>Vegetal                      | Monica Gallo                   | monica.gallo@agrocalidad.gob.ec |
| Ecuador             | INIAP (NARC)                                               | Daniel Navia<br>Santillán      | daniel.navia@iniap.gob.ec       |
| Peru                | SENASA Peru (NPPO)                                         | Mary Whu                       | MWHUP@senasa.gob.pe             |
| Thailand            | Irradiation for Agricultural<br>Development Dividion       | Watchreeporn<br>Orankanok      | watchreeporn@doae.go.th         |

# 11. Links to Technical Cooperation Projects

There are no links to current TC projects.

# 12. Logical Framework

| Project Design Elements                                                                                                                                                   |                                                                                                                                                                                                                                                 | Verifiable Indicators                      | Means of Verification                                                                                          | Important Assumptions                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ov                                                                                                                                                                        | erall Objective:                                                                                                                                                                                                                                |                                            |                                                                                                                |                                                                                                                                                                                                                                             |
| To advance development and implementation of<br>SIT and inherited sterility for integration with other<br>biocontrol for greenhouse and other confined<br>arthropod pests |                                                                                                                                                                                                                                                 | N/A                                        | N/A                                                                                                            | Non-SIT biocontrol is not sufficiently controlling the targeted pests in confined cropping systems                                                                                                                                          |
| Spo                                                                                                                                                                       | ecific Objective:                                                                                                                                                                                                                               |                                            |                                                                                                                |                                                                                                                                                                                                                                             |
| 1.<br>2.<br>3.                                                                                                                                                            | To adapt inherited sterility or SIT for<br>Spodoptera/Helicoverpa species for confined<br>cropping systems<br>To develop SIT for Drosophila suzukii<br>To develop inherited sterility or SIT for Tuta<br>absoluta and Neoleucinodes elegantalis | Techniques advanced<br>Network established | Reports and publications of<br>techniques<br>Number, expertise and<br>geographic distribution of<br>applicants | Regulatory requirements permit the use of<br>inherited sterility<br>Suitable participants apply to join the CRP<br>with a broad range of expertise<br>User community is engaged<br>Radiation services and insects colonies are<br>available |
| Ou                                                                                                                                                                        | tcomes:                                                                                                                                                                                                                                         |                                            |                                                                                                                |                                                                                                                                                                                                                                             |
| 1.                                                                                                                                                                        | SIT and inherited sterility techniques for the targeted pest species ready for implementation in confined cropping systems                                                                                                                      |                                            |                                                                                                                | R&D has resulted in a functional SIT packag for some of the targeted species                                                                                                                                                                |

| Project Design Elements                                                                                                       | Verifiable Indicators               | Means of Verification                          | Important Assumptions                                          |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|----------------------------------------------------------------|
| <ol> <li>SIT and inherited sterility techniques for the<br/>targeted pest species adopted in confined</li> </ol>              | Crop losses                         | National statistics                            | Growers are willing to adopt the developed technology          |
| cropping systems                                                                                                              |                                     |                                                | Growers acceptance of limited crop damage from $F_1$ sterility |
|                                                                                                                               |                                     |                                                | No other sustainable control method will become available      |
| Outputs:                                                                                                                      |                                     |                                                |                                                                |
| <ol> <li>Survey on factors inhibiting the adoption of<br/>inherited sterility for Spodoptera/Helicoverpa<br/>group</li> </ol> | Survey conducted                    | RCM report                                     | Industry engagement                                            |
| 2. Feasibility study on inherited sterility and SIT                                                                           | Research conducted                  | Research reports                               | Viable opportunities are identified                            |
| for Spodoptera/Helicoverpa group in confined<br>cropping systems                                                              |                                     |                                                | New techniques are appropriate                                 |
| 3. Radiation biology for <i>D. suzukii</i>                                                                                    | Protocols                           | RCM report                                     | Techniques developed                                           |
| 4. Sexing system for <i>D. suzukii</i>                                                                                        | Protocols                           | RCM report                                     |                                                                |
| 5. Mass rearing for D. suzukii                                                                                                | Manuscripts drafted                 | Manuscripts submitted                          | Manuscripts accepted                                           |
| 6. Feasibility study for <i>D. suzukii</i> in confined cropping systems                                                       | New facts and refined understanding | Papers published, contract reports, CRP review | End users engaged                                              |
| 7. Radiation biology <i>T. absoluta</i> and <i>N. elegantalis</i>                                                             | Protocols                           | RCM report                                     | Techniques developed                                           |
| 8. Sexing system for <i>T. absoluta</i> and <i>N. elegantalis</i>                                                             | Test conducted                      | Test reports                                   | End users engaged                                              |
| 9. Mass rearing for <i>T. absoluta</i> and <i>N. elegantalis</i>                                                              | Manuscripts drafted                 | Manuscripts submitted                          | Manuscripts accepted                                           |
| 10. Feasibility study for <i>T. absoluta</i> and <i>N. elegantalis</i> in confined cropping systems                           | New facts and refined understanding | Papers published, contract reports, CRP review | End users engaged                                              |

| Project Design Elements                                                                                                                                                 | Verifiable Indicators           | Means of Verification | Important Assumptions                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|--------------------------------------------------------|
|                                                                                                                                                                         | Recommendations for future work | RCM report            | Validation will not be completed within the CRP period |
|                                                                                                                                                                         |                                 |                       | New opportunities identified as a result of the CRP    |
|                                                                                                                                                                         |                                 |                       | Project is still relevant at the end of the CRP        |
| Activities:                                                                                                                                                             |                                 |                       |                                                        |
| 1. Submit CRP proposal.                                                                                                                                                 |                                 |                       |                                                        |
| <ol> <li>Announce project to MS and amongst<br/>established entomologists, biocontrol and pest<br/>control specialists and commercial glasshouse<br/>growers</li> </ol> |                                 |                       | Project is approved                                    |
| 3. Organize first RCM to plan, coordinate and review research activities                                                                                                |                                 |                       |                                                        |
| 4. Carry out R&D.                                                                                                                                                       |                                 |                       |                                                        |
| 5. Second RCM to analyse data and draft technical protocols as required                                                                                                 |                                 |                       |                                                        |
| 6. Hold workshop on "Insect mass rearing for pests of confined cropping systems (D. suzukii) and irradiation protocols", in conjunction with second RCM.                |                                 |                       |                                                        |
| 7. Continue R&D.                                                                                                                                                        |                                 |                       |                                                        |
| 8. Review the CRP after its third year.                                                                                                                                 |                                 |                       |                                                        |

| Project Design Elements                                                                                                                                            | Verifiable Indicators | Means of Verification | Important Assumptions |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| 9. Convene third RCM to evaluate and standardize protocols.                                                                                                        |                       |                       |                       |
| 10. Hold workshop on "Insect mass rearing for<br>pests of confined cropping systems<br>(Lepidoptera) and irradiation protocols", in<br>conjunction with third RCM. |                       |                       |                       |
| 11. Continue R&D.                                                                                                                                                  |                       |                       |                       |
| 12. Hold final RCM to review data and reach consensus.                                                                                                             |                       |                       |                       |
| 13. Evaluate the CRP and submit evaluation report.                                                                                                                 |                       |                       |                       |
| 14. Summarize and publish advances of CRP in a series of joint publications (journal special issue).                                                               |                       |                       |                       |

#### 13. References

- ABBASI, B.H., K. AHMED, F. KHALIQUE, N. AYUB, H.J. Liu, S.A. RAZA KAZMI and M.N. AFTAB (2007). Rearing the cotton bollworm, *Helicoverpa armigera*, on a tapioca-based artificial diet. Journal of Insect Science 7:35.
- ASPLEN, M.K., G. ANFORA, A. BIONDI, D.S. CHOI, D. CHU, K.M. DAANE, P. GIBERT, A.P. GUTIERREZ, K.A. HOELMER and W.D. HUTCHISON (2015). Invasion biology of spotted wing Drosophila (*Drosophila suzukii*): a global perspective and future priorities. Journal of Pest Science 88(3):469-94.
- BBC (2016) Nigeria's Kaduna state declares 'tomato emergency'. <u>http://www.bbc.com/</u> <u>news/world-africa-36369015</u>
- BELLAMY, D.E., M.S. SISTERSON and S.S. WALSE (2013). Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, *Drosophila suzukii*. PLoS One 8(4):e61227.
- BLACKMER, J.L., A.E. EIRAS and C.L. DE SOUZA (2001). Oviposition preference of Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) and rates of parasitism by Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) on Lycopersicon esculentum in São José de Ubá, RJ, Brazil. Neotropical Entomology 30(1):89-95.
- CAGNOTTI, C.L., M.M. VISCARRET, M.B. RIQUELME, E.N. BOTTO, L.Z. CARABAJAL, D.F. SEGURA and S.N. LÓPEZ (2012). Effects of X-rays on *Tuta absoluta* for use in inherited sterility programmes. Journal of Pest Science 85(4):413-21.
- CARPENTER, J.E. and B.R. WISEMAN (1992). *Spodoptera frugiperda* (Lepidoptera: Noctuidae) development and damage potential as affected by inherited sterility and host plant resistance. Environmental Entomology 21:57-60.
- CARPENTER, J.E., HIDRAYANI, N. NELLY and B.G. MULLINIX (1997). Effect of substerilizing doses of radiation on sperm precedence in fall armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 90(2):444-8.
- CARPENTER, J.E., J.R. YOUNG and A.N. SPARKS (1985). Fall armyworm (Lepidoptera: Noctuidae): field survival of F<sub>1</sub> larvae from partially sterile parents. Florida Entomologist 68(2):290-6.
- CARPENTER, J.E., J.R. YOUNG and A.N. SPARKS (1986). Fall armyworm (Lepidoptera: Noctuidae): comparison of inherited deleterious effects in progeny from irradiated males and females. Journal of Economic Entomology 79(1):46-9.
- CARPENTER, J.E., J.R. YOUNG, E.F. KNIPLING and A.N. SPARKS (1983). Fall armyworm (Lepidoptera: Noctuidae): inheritance of gamma-induced deleterious effects and potential for pest control. Journal of Economic Entomology 76(2):378-82.
- CINI, A., C. IORIATTI and G. ANFORA (2012). A review of the invasion of *Drosophila suzukii* in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology 65(1):149-60.

- DEBOLT, J.W. and F.K. WRIGHT (1976). Beet armyworm: inherited sterility produced by irradiation of pupae or adults. Journal of Economic Entomology 69(3):336-8.
- DESNEUX, N., E. WAJNBERG, G. BURGIO, S. ARPAIA, K. WYCKHUYS, C. NARVÁEZ-VASQUEZ CA, J. GONZÁLEZ-CABRERA, D. CATALÁN-RUESCAS, E. TABONE, J. FRANDON, J.C. PIZZOL, C. PONCET and A. URBANEJA. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197–215.
- DIAZ MONTILLA, A.E., M.A. SOLIS and T. KONDO. 2013. The fruit borer, Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae), an insect pest of neotropical Solanaceous fruits, In J Peña (Ed.), Potential Invasive Pests of Agricultural Crops, CABI, London.
- DOS SANTOS, K.B., MENEGUIM, A.M., DOS SANTOS, R.B., DOS SANTOS, W.J., BOAS, G.V., DUMAS, V., MARTINS, E., PRAÇA, L.B., QUEIROZ, P., BERRY,C. and R. MONNERAT. 2009. Selection and characterization of the *Bacillus thuringiensis* strains toxic to *Spodoptera eridania* (Cramer), *Spodoptera cosmioides* (Walker) and *Spodoptera frugiperda* (Smith) (Lepidoptera: Noctuidae). Biological Control 50(2): 157–163.
- DOWNEY, D., S. CHUN and P. FOLLETT (2015). Radiobiology of small hive beetle (Coleoptera: Nitidulidae) and prospects for management using sterile insect releases. Journal of Economic Entomology 108(3):868-72.
- EIRAS, A.E. and J.L. BLACKMER (2003). Eclosion time and larval behavior of the tomato fruit borer, *Neoleucinodes elegantalis* (Guenée) (Lepidoptera: Crambidae). Scientia Agricola 60(1):195-7.
- EPPO. 2005. Data sheets on quarantine pests: Tuta absoluta. Bulletin OEPP/EPPO Bulletin 35, 434–435.
- HAMM, J.J. and J.E. CARPENTER (1997). Compatibility of nuclear polyhedrosis viruses and inherited sterility for control of corn earworm and fall armyworm (Lepidoptera: Noctuidae). Journal of Entomological Science 32:148-53.
- JARJEES, E.A. and D.J. MERRITT (2004). The effect of parasitization by *Trichogramma australicum* on *Helicoverpa armigera* host eggs and embryos. Journal of Invertebrate Pathology 2004, 85(1):1-8.
- KASPI, R. and M. PARRELLA (2006). Improving the biological control of leafminers (Diptera: Agromyzidae) using the sterile insect technique. Journal of Economic Entomology 99(4):1168-75.
- MAKEE, H. and G. SAOUR. 2003. Noninherited sterility in irradiated *Phthorimaea operculella* females. Journal of Applied Entomology 127(9-10): 489–493
- MERKX-JACQUES, M. and J.C. Bede (2005). Influence of diet on the larval beet armyworm, *Spodoptera exigua*, glucose oxidase activity. Journal of Insect Science 5: 48.
- MOAR, W.J., M. PUSZTAI-CAREY, H. VAN FAASSEN, D. BOSCH, R. FRUTOS, C. RANG, K. LUO and M.J. ADANG (1995). Development of *Bacillus thuringiensis* CryIC Resistance by

*Spodoptera exigua* (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 61(6): 2086-92.

- MOLLÁ, Ó., H. MONTÓN, P. VANACLOCHA, F. BEITIA and A. URBANEJA. 2009. Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. Proceedings of the IOBC/WPRS Working Group "Integrated Control in Protected Crops", Crete, Greece, 6-11 September 2009. IOBC/WPRS Bulletin 2009 Vol. 49 pp. 209-214
- OCAMPO, V.R. (2001). Effect of a substerilizing dose of radiation on the mating competitiveness of male and on the mating propensity of female *Helicoverpa armigera* (Lepidoptera: Noctuidae). Florida Entomologist 84(2):194-8.
- OMOTO, C., O. BERNARDI, E. SALMERON, R.J. SORGATTO, P.M. DOURADO, A. CRIVELLARI, R.A. CARVALHO, A. WILLSE, S. MARTINELLI, and G. P. HEAD (2015). Field-evolved resistance to Cry1Ab maize by *Spodoptera frugiperda* in Brazil. Pest Management Science doi: 10.1002/ps.4201.
- POLANCZYK, R.A., R.R.F.P.D. SILVA and L.M. FIUZA (2000). Effectiveness of Bacillus thuringiensis strains against *Spodoptera frugiperda* (Lepidoptera: Noctuidae). Brazilian Journal of Microbiology 31(3):164-6.
- PRANSOPON, P., M. SUTANTAWONG, P. HORMCHAN and A. WONGPIYASATID (2000). Effects of gamma radiation on mature pupae of the cotton bollworm, *Helicoverpa armigera* (Hübner) and their F1 progeny. Kasetsart Journal, Natural Sciences 34(3):401-7.
- RAMOS OCAMPO, V., J.B.D. LEON (2002). *The effects of radiation on the biology and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae),* Evaluation of Lepidoptera Population Suppression by Radiation Induced Sterility. IAEA, pp. 29-36.
- SAOUR, G. and H. MAKEE (1997). Radiation induced sterility in male potato tuber moth *Phthorimaea operculella* Zeller (Lep., Gelechiidae). Journal of Applied Entomology 121(7):411-5.
- SAOUR, G. and H. MAKEE (1999). Effect of gamma irradiation on sperm utilization in twicemated female *Phthorimaea opercullella* Zeller (Lep., Gelechiidae). Journal of Applied Entomology 123(9):513-7.
- SCHÄFER, M.O., RITTER, W., PETTIS, J. and P. NEUMANN. 2010. Small hive beetles, *Aethina tumida*, are vectors of *Paenibacillus larva*. Apidologie 41(1): 14–20.
- SNOW, J.W., J.R. YOUNG and R.L. JONES (1970). Competitiveness of sperm in female fall armyworms mating with normal and chemosterilized males. Journal of Economic Entomology 63(6):1799-802.
- SNOW, J.W., J.R. YOUNG, W.J. LEWIS and R.L. JONES (1972). Sterilization of adult fall armyworms by gamma irradiation and its effect on competitiveness. Journal of Economic Entomology 65(5):1431-3.
- TALEKAR, N.S. (2002). Controlling Eggplant Fruit and Shoot Borer. AVRDC, 02-534. Asian Vegetable Research and Development Center.

- TROPEA GARZIA, G., A. SISCARO, L. BIONDI and L. ZAPPALA. 2012. Tuta absoluta, a South American pest of tomato now in the EPPO region: biology, distribution and damage. Bulletin OEPP/EPPO Bulletin 42 (2): 205–210.
- URBANEJA, A., H. MONTÓN and O. MOLLÁ. 2009. Suitability of the tomato borer Tuta absoluta as prey for *Macrolophus pygmaeus* and *Nesidiocoris tenuis*. Journal of Applied Entomology 133, 292–296
- VAN LENTEREN, J.C. and V.H. BUENO (2003). Augmentative biological control of arthropods in Latin America. BioControl 48(2):123-39.
- WALKER, C.S. (2012). The application of sterile insect technique against the tomato leafminer *Liriomyza bryoniae*. Imperial College London.

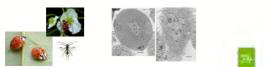
Annex 4 Presentations

# BERRIES PEST MANAGEMENT IN QUEBEC

Annabelle Firlej, Ph.D. Institut de recherche et de développement en Agro-environnement



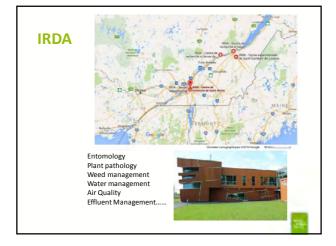
# **PLAN**


- Very short review of professional background and of past research
- Review of recent research on *Drosophila suzukii*

# **EDUCATIONAL BACKGROUND**

 Master of Biology (University of Quebec at Montreal)
 Selection of an artificial diet and artificial egg laying for a Miridae predator of Tetranychus urticae Koch (Firlej et al. 2002)




 Ph.D. of Biology (University of Quebec at Montreal)
 Interaction between the parasitoid *Dinocampus coccinellae* and *Harmonia* axyridis Pallas and *Coleomegilla maculata* lengi Timberlake (Firlej et al. 2005, 2007, 2010, 2012)



# **EDUCATIONAL BACKGROUND**

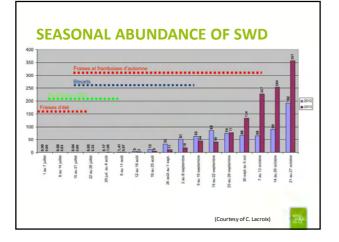
- Post-doctoral study (FQRNT funded, University of Montreal)
   > Impact of climate change (CO2) on interaction between aphids and parasitoids
  - Studying impact of climate change (temperature) on development rate of aphilds
  - Development of molecular gut content analysis for studying control of soybean aphid by carabid beetles (Firlej et al. 2012; 2013)







# **PROJECTS**

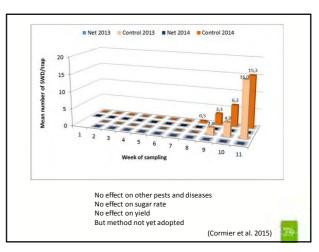

- 1. Improving pesticide application method for cranberry production (2 years-2014-2015)
- Selection of low-risk insecticides to control the cranberry weevil in cranberry farm (2 years-2015-2016)
- Improved molecular identification technique of pests to meet the diagnostic needs of the agricultural sector in the context of climate change (2 years-2016-2018)
- Creation of integrated fruit production poster for small-fruit (1 year-2016)
- Adaptation of phytosanitary measures for pests and diseases of fruit crops in regard to climate change impacts (3 years-2016-2019)



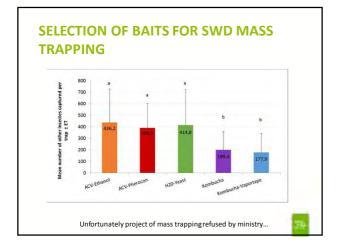


# **SWD IN QUEBEC**

- Arrival in 2010: strawberry, raspberry, blueberry...
- Sanitation and short interval between harvest
- Insecticides: max of 10 applications in some crops (Exirel, Success 480 SC, Entrust SC, Delegate WG, Imidan 70WP instapak, Mako, Malathion 85 E)
- Harvest 3 days after insecticide application
  - ➤ Health concern
  - Damage uncontrolled
  - Few alternative methods
  - Growers discouraged
  - ➢ Sector really open to new solution




# **PROJECTS ON DROSOPHILA SUZUKII**


- 1. Net exclusion to control the SWD (2 years-2013-2014)
- 2. Baits for SWD mass-trapping (1 year-2014)
- The sterile insect release as a control method for SWD (3 years-2014-2017, with 1 year extension)
   Repellents against SWD in raspberry fall (2 years-
- Repetients against swo in raspoerty fair (2 years-2016-2017)
   Study of the link between the populations of
- Study of the link between the populations of spotted wing drosophila, damage and yield losses (2 years-2016-2018)
- 6. Litterature review on SWD (1 year-2016)











# **PROJECTS ON DROSOPHILA SUZUKII**

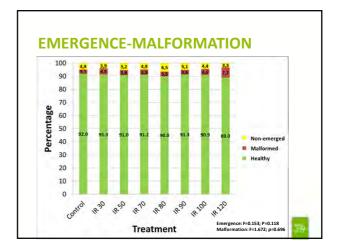
- 1. Net exclusion to control the SWD (2 years-2013-2014)
- 2. Baits for SWD mass-trapping (1 year-2014)
- The sterile insect release as a control method for SWD (3 years-2014-2017, with 1 year extension)

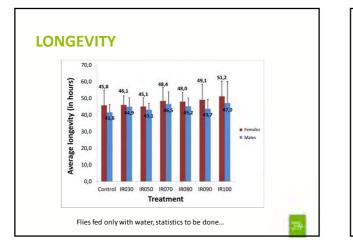


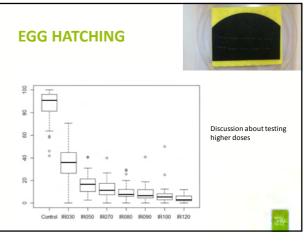
Canada

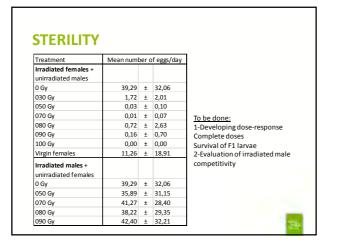
IAEA

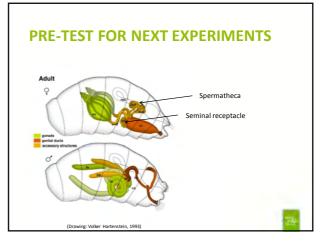
A MONTMORENCY

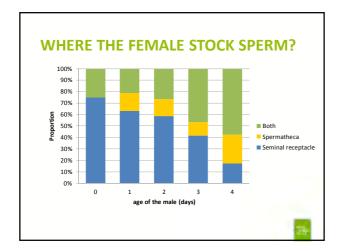


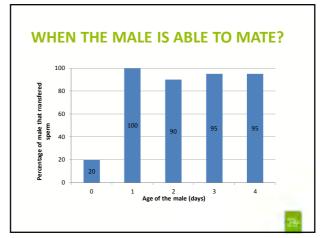


# **DOSE-RESPONSE**

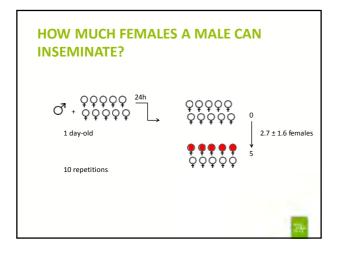

- 0, 30, 50, 70, 80, 90, 100 and 120 Gy
- Five day-old pupae
- >10 000 pupae

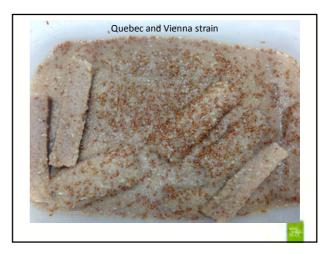


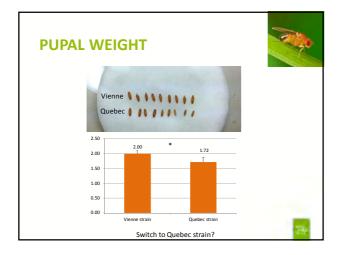





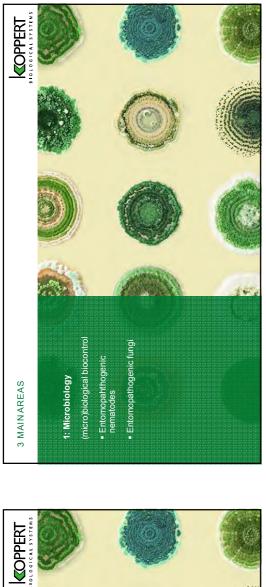




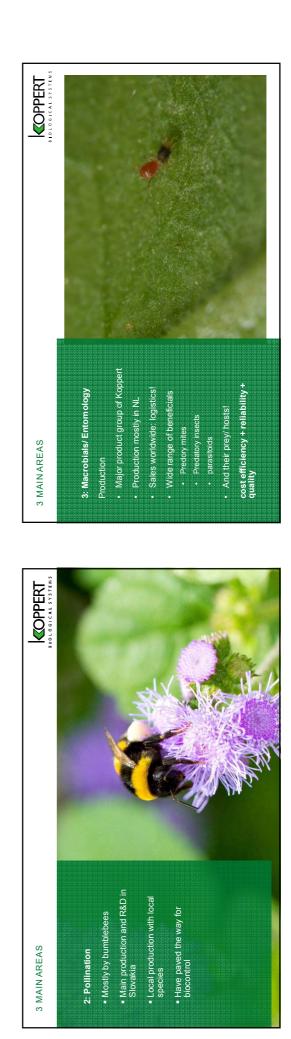




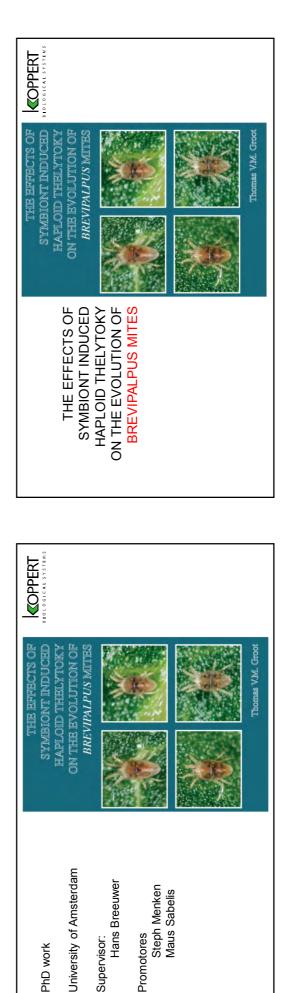

# **PROJECTS ON DROSOPHILA SUZUKII**

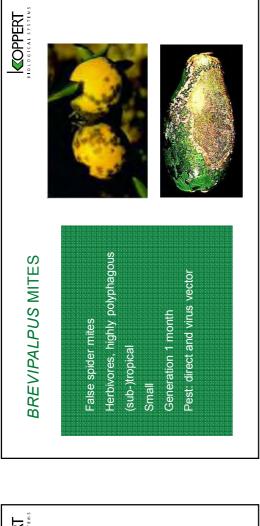

- 1. Net exclusion to control the SWD (2 years-2013-2014)
- 2. Baits for SWD mass-trapping (1 year-2014) The sterile insect release as a control method for SWD (3 years-2014-2017, with 1 year extension)
- Repellents against SWD in raspberry fall (2 years-2016-2017)
- Study of the link between the populations of spotted wing drosophila, damage and yield losses (2 years-2016-2018)
- 6. Litterature review on SWD (1 year-2016)

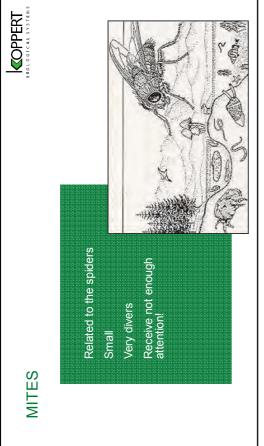


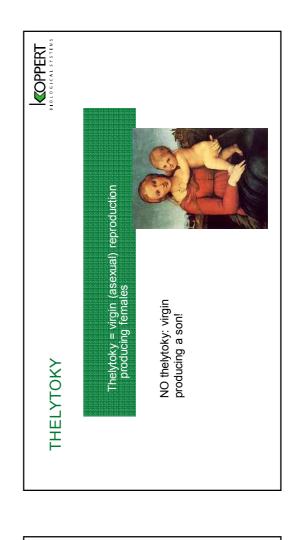




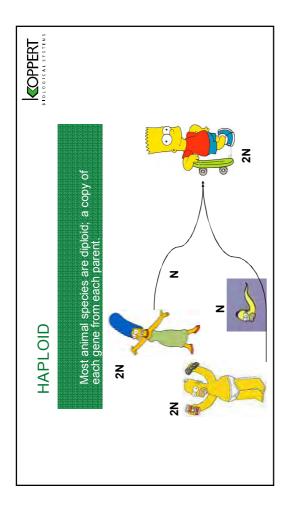



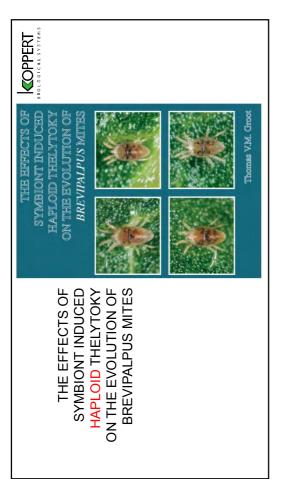



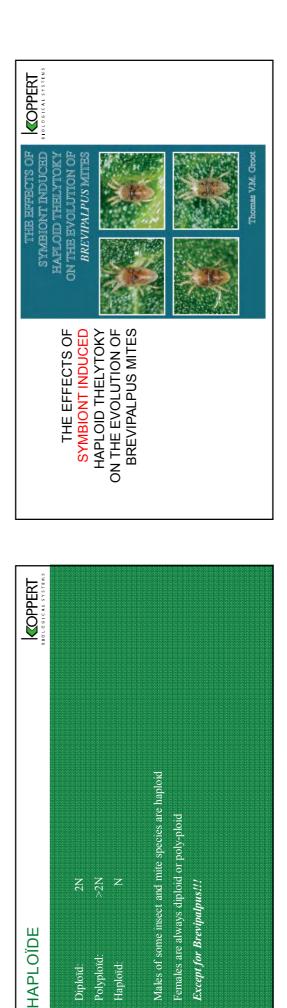





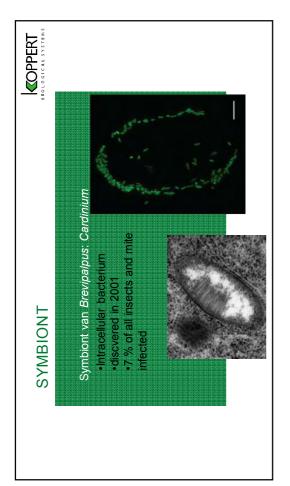



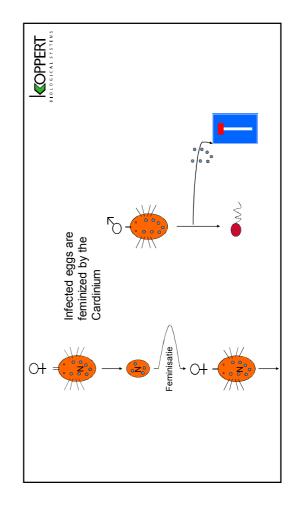





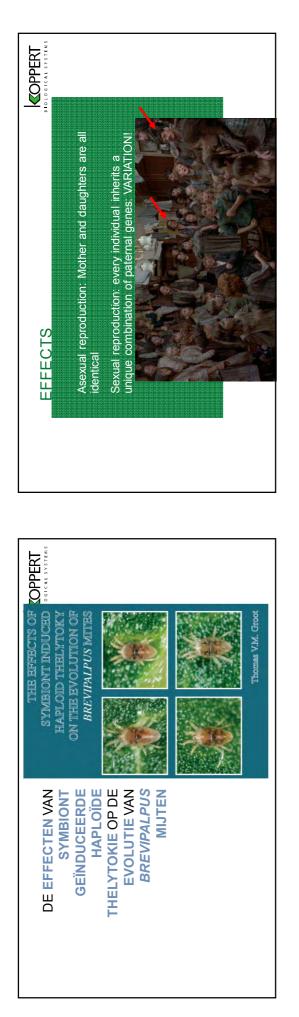


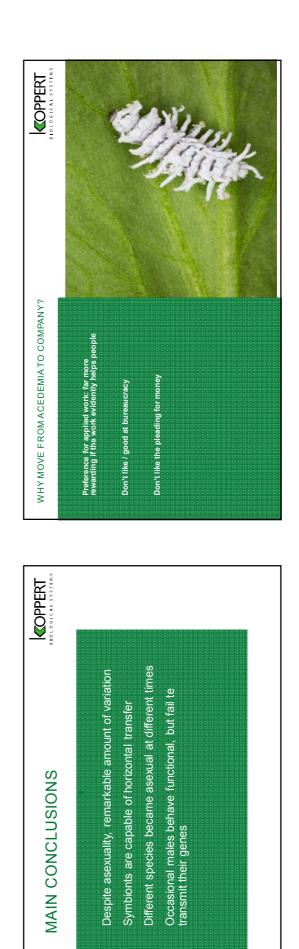


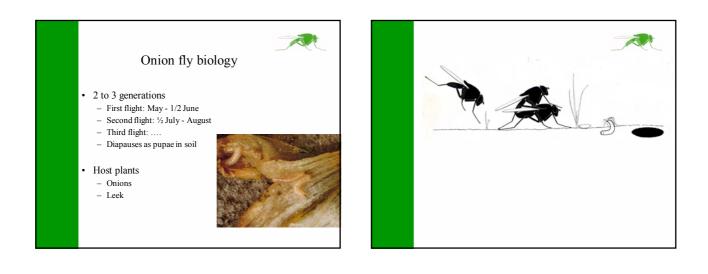



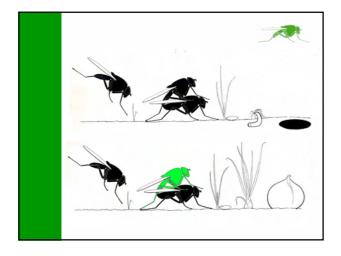

Polyploid: Diploïd:


Haploid:



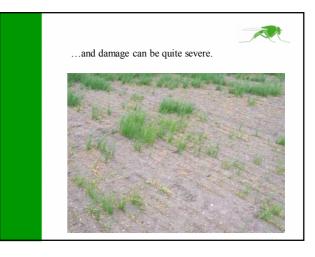








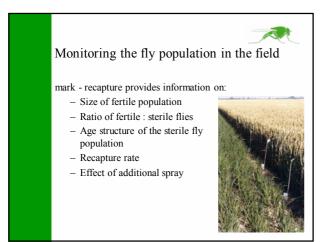


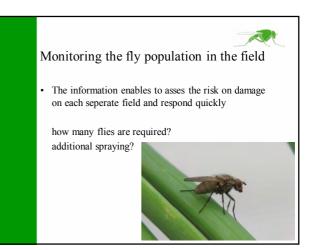


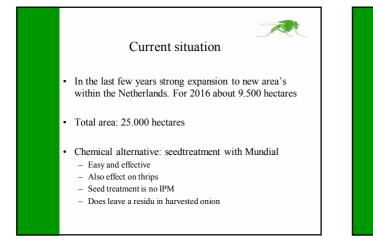






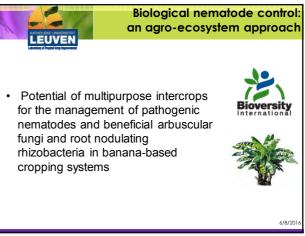





## Producing sterile flies

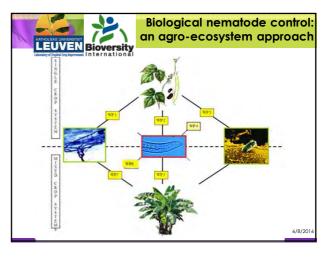
- Total production: 1.000.000.000
- · Produced all year round
- · In summer: weekly batches taken from storage
- Sterilization as pupae
- Released on the fields as flies
- · All sterile flies are color marked
- · No sexing strain; max. 10-15 generations from wild!

# Monitoring the fly population in the field mark - recapture - sterile flies are marked - various colours mark - recapture - at least one set of traps / field - traps are emptied once per week - catches are processed immediately

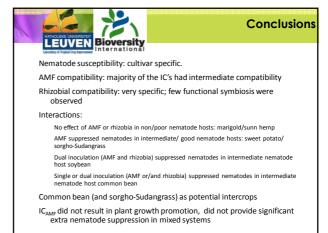








## A unique way of working...

- Each filed is treated separately
- Fully paid for by the growers; no subsidies!
- · Price depending on size of the field and the crop
- · Contracts per year
- · Requires a good participation rate
- To prevent contamination from non-participating fields
- For efficiency in the logistics of fieldwork
- Augmentative SIT?
















- +350 employees .
- · Broad, reliable product offering:
  - Biological Pollination
  - Biological Control
     Monitoring & Scouting
  - Accessories
     Greenlab



# What is IBMA?

- International Biocontrol Manufacturers Association • Established in 1995, this year 20th anniversary
- •Over 230 members
- •Global (European focused) Association
- Strong growth from 10 original founding members
- •Diverse membership
- SME's to multinationals
- •Organic and biocontrol only to IPM and conventional
- · · Principally involved in agriculture and horticulture



## **Mission statement**

IBMA

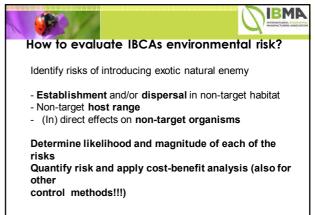
- Raise awareness, both among decision makers and consumers, concerning the benefits of the biocontrol products.
- Ensure Biocontrol is at the forefront thinking. It is not just something that it is nice to do but a priority. (SUD)



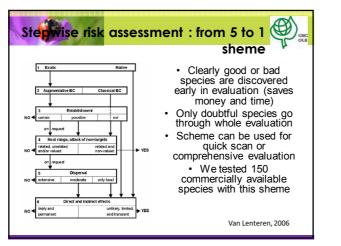


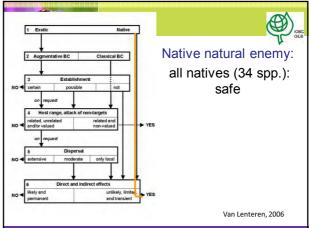


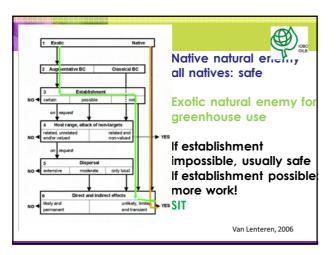


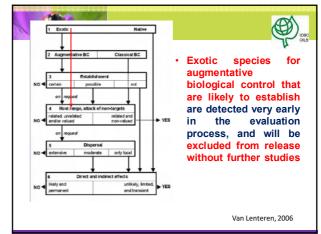


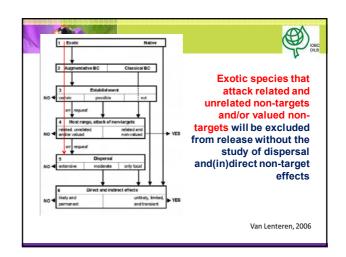


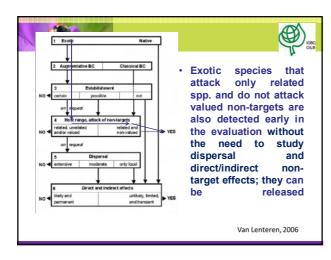



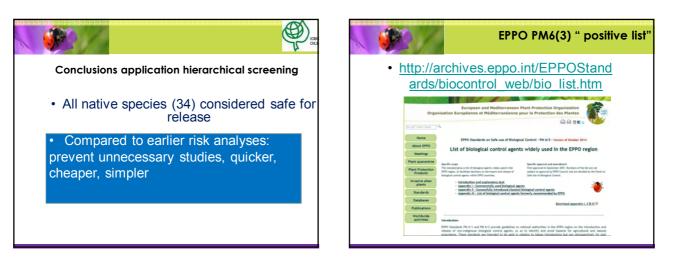



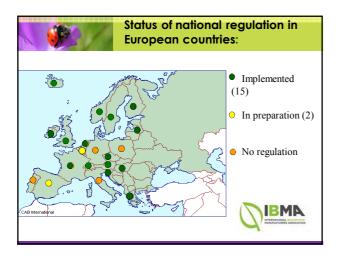



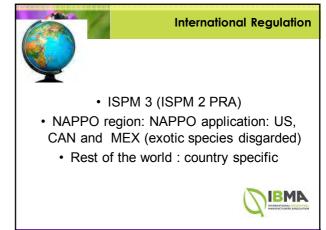





(Van Lenteren, 2006)



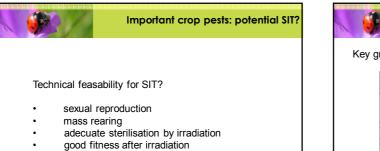









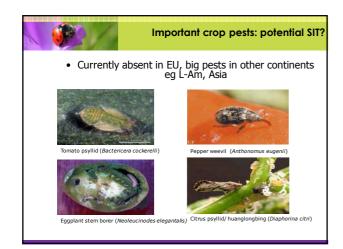












- no remating after mating sterile male
- island population criteria met in confined conditions

#### Important crop pests: potential SIT?

#### Key greenhouse pests in EU-N Am

| Pest scientific name                                | Common name pest   | Taxonomical group       | Crop                                        |
|-----------------------------------------------------|--------------------|-------------------------|---------------------------------------------|
| Aculops                                             | Tomato russet mite |                         | Tomato                                      |
| Caterpillars                                        |                    |                         | Tomato                                      |
| Drosophila suzukii                                  |                    | Diptera                 | Soft Fruits                                 |
| Scirtorhips mangiferae<br>(blueberry - leaf thrips) |                    | Thysanoptera            | Soft Fruits                                 |
| Echinotrhips                                        |                    |                         | Cut flowers                                 |
| Mealybugs                                           |                    |                         | Tomato, sweet<br>pepper,                    |
| Bemisia tabaci                                      |                    | Hemiptera : Aleyrodidae | Several                                     |
| Trialeuroides vaporarium                            |                    | Hemiptera : Aleyrodidae | Several                                     |
| Leafhoppers                                         |                    |                         | Sweet peppers                               |
| Frankliniella occidentalis                          |                    | Thysanoptera            | Soft fruits, Sweet<br>peppers, cut flowers, |
| Nezara sp                                           |                    | Heteroptera             |                                             |
| Lygus spp                                           |                    | Heteroptera             | cucumber                                    |





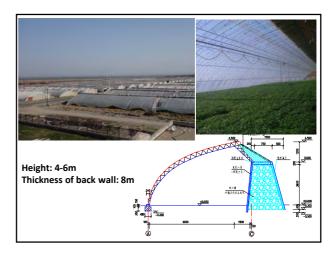
Occurrence and Control of Insect Pests on Greenhouse Vegetables in China

## Shaoli Wang

March 14, 2016

# Outline

- **Greenhouse in China**
- Vegetable Ecosystem in greenhouse in China
- Main insects and their control in greenhouse in China
- Integration of SIT and biological method in China


# Greenhouse in China

Modernized greenhouse (Left)

□ Solar greenhouse—widely used(Middle) 8-30°C

Plastic shed—widely used(Right)







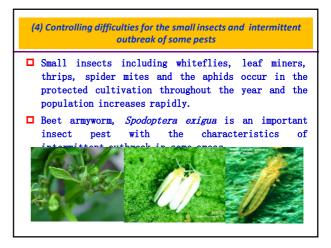
# Importance of developing the protected cultivation in China

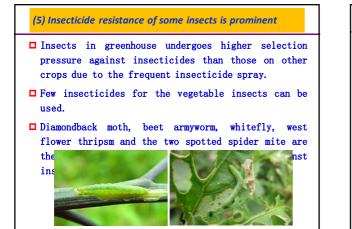
- Meeting the requirement of few kinds of vegetables in Northern China, even though this still needs much improvement
- □ achieve the vegetable supply throughout the year
- **D** Some kinds of fruit trees and flowers
- **The protected cultivation reaches 4 million hm<sup>2</sup> in China.**



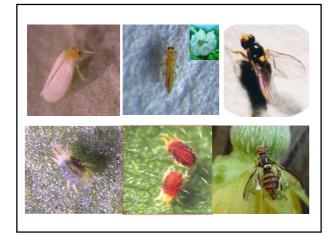
## Vegetable ecosystem in greenhouse in China

- 1. The ecosystem is unstable due to the short-term growing periods and the crop changes frequently.
- 2. The temperature changes drastically in the greenhouse ranging from 8 degree to 30 degree, especially in the early spring and late autumn.
- 3. The humidity in the greenhouse is very high, resulting in the plant disease.
- 4. The control of natural enemy on the greenhouse insect is relatively weak due to the unstable ecosystem, environment and the insecticide spray.



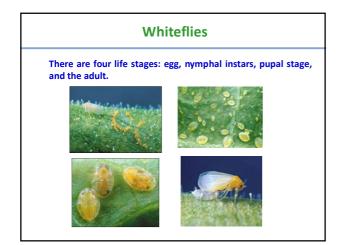


## (2)Secondary pests become the main pests

- Stripped flea beetle is the most important insect on vegetables in Southern China and it becomes more and more serious in Northern China currently.
- □ The root maggot becomes a key factor impressing the production of onion and garlic in northern China.

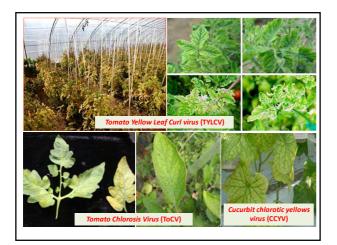


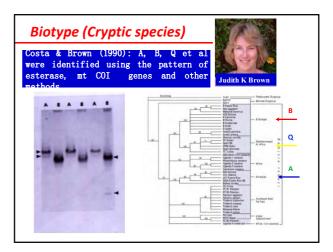





#### Main insects in greenhouse in China Whitefly Greenhouse whitefly (Trialeurodes vaporariorum) Sweetpotato whitefly (Bemisia tabaci) Thrips Onion thrips (Thrips tabaci); Thrips palmi Western flower thrips (Frankliniella occidentalis) Aphid melon aphid (Aphis gossypii); Green peach aphid (Myzus persicae) Leafmine Pea leafminer (Liriomyza huidobrensis); Vegetable leafminer (Liriomyza sativae) Mites Broad mite (Polyphagotarsonemus latus); Tetranychus spider mite(T. urticae and T. truncatus) Melon fly melon fruit fly (Bactrocera cucurbitae); Oriental Fruit Fly (Bactrocera dorsalis)





# Other important insects

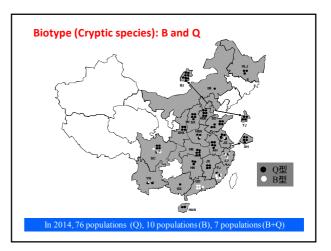


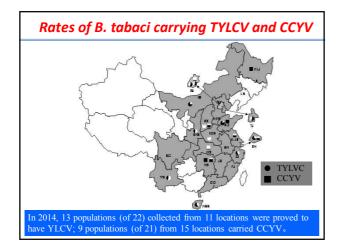


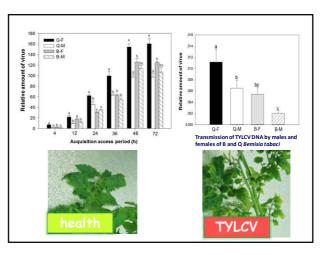







## B biotype


- □ Mid 1980s to 1990s: Major geographical expansion in Bbiotype
- B-biotype become predominant due to wide host range, resistance to insecticides and/or other characteristics.
- B-biotype is generally resistant to pyrethroids, but resistance to newer insecticide groups still patchy.


## Q biotype

- □ Q-biotype was formerly restricted to Mediterranean, where resistance to a broad range of insecticides (neonicotinoids, IGRs, pyrethroids) is now widespread
- Q-biotype currently common over much of the Mediterranean, but not ubiquitous (B-biotypes still occur).
- □ Q-biotype (plus multiple resistance) are now being transported on ornamentals to other parts of the world (e.g. USA, northern Europe, Japan, and China)





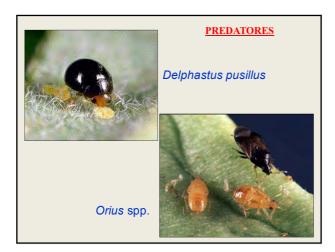




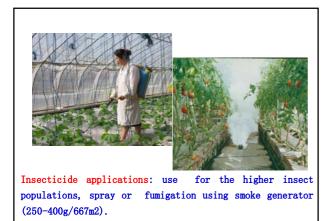
| Insecticides        | Biotype | SE(SE)        | LC <sub>50</sub> (mg/L) | 95% FL       | Q/B   |
|---------------------|---------|---------------|-------------------------|--------------|-------|
| Abamectin           | В       | 1.85(0.200)   | 0.0870                  | 0.0630~0.120 |       |
|                     | Q       | 2.10(0.196)   | 0.0970                  | 0.0740~0.127 | 1.12  |
| Acetamiprid         | В       | 3.47(0.358)   | 3.22                    | 2.44~4.24    |       |
|                     | Q       | 1.49(0.157)   | 22.1                    | 15.8~30.1    | 6.87  |
| Thiamethoxam        | В       | 1.06(0.112)   | 17.8                    | 9.78~32.5    |       |
|                     | Q       | 0.602(0.0840) | 54.9                    | 19.2~157     | 3.08  |
| Cyantraniliprole    | В       | 1.58(0.111)   | 6.23                    | 4.89~7.94    |       |
|                     | Q       | 1.12(0.145)   | 93.9                    | 50.1~175     | 15.1  |
| Chlorantraniliprole | В       | 1.13(0.245)   | 561                     | 176~1788     |       |
|                     | Q       | 1.65(0.185)   | 4564                    | 3071~6786    | 8.14  |
| Buprofezin          | В       | 1.98(0.148)   | 1476                    | 1192~1827    |       |
|                     | Q       | 1.85(0.157)   | 5155                    | 3639~7302    | 3.49  |
| Pyriproxyfen        | В       | 2.36(0.211)   | 1434                    | 1125~1829    |       |
|                     | Q       | 1.58(0.183)   | 8810                    | 5828~13319   | 6.14  |
| Spirotetramat       | в       | 1.51(0.209)   | 2450                    | 1628~3687    |       |
|                     | Q       | >16000        | _                       | _            | >6.53 |

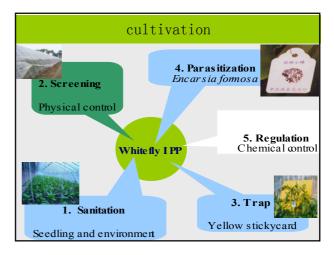
# Biological differences of B. tabaci B and Q biotypes Adaptability: The adaptabilities, growth and development, of biotypes B and Q on the host plants are obviously different.

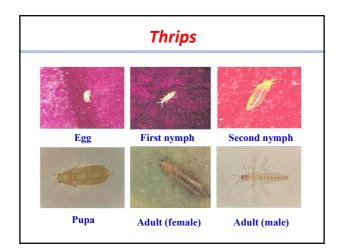
- □ Susceptibility to insecticides: The *B. tabaci* Q biotype has higher tolerance or resistance to many insecticides than B, especially the neonicotinoid insecticides.
- Efficacy and characteristics of virus transmission: The Q biotype has the stronger transmission efficacy than B for Tomato Yellow Leaf Curl Virus(TYLCV) and Tomato chlorosis virus (ToCV).





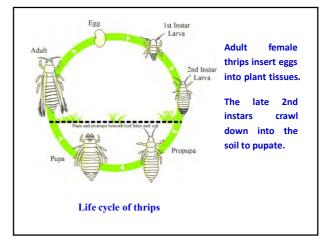



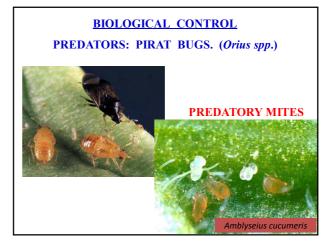






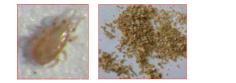





*Tomato spotted wilt virus*, TSWV is transmitted by this thrip and causes giant economical losses.







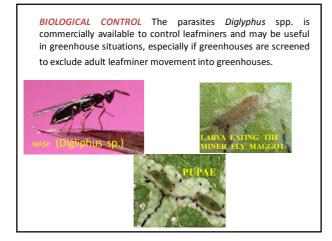

#### **BIOLOGICAL CONTROL**

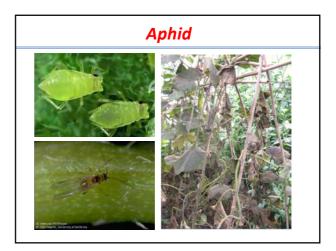
Minute Flower Bug (*Orius tristicolor*), and two predatory mites, *Amblyseius cucumeris* and *Hypoaspis miles*. Minute pirate bugs are polyphagous and will also feed on aphids, mites, and small caterpillars. *Orius* are released at a rate of 2000 to 4000 per acre, while *N. cucumeris* are released at a rate of 10 to 50 mites per plant for each of 2 to 3 weeks.

These mites will also feed on spider mite eggs, pollen, and fungi. *Hypoaspis miles* are soil-inhabiting predators that feed on thrips prepupae and pupae in the soil. A commercially available parasite of greenhouse thrips is *Thripobius semileteus*.



## CHEMICAL CONTROL





Root irrigation using imidacloprid or thiamethoxam (3000-4000x) after the seedling transplantation with 30ml/plant.

Spinetoram, abamectin, thiamethoxam, emamectin benzoate are the candidates using in the greenhouse currently.









# Control methods for aphids

- 1) Cultural control. clean the weed and make the seedlings clean and healthy
- 2) Seedlings with mesh. White or silver grey 40-50 mesh are used to cover the seedling beds to minimize the aphids and its vectored virus disease.
- 3) Preventing aphid with the plastic film. Silver grey mesh is used to cover the door and window, ventilation opening, in case of the aphid flying into the greenhouse. Silver strip is hung in the field.
- 4) Sticky card. Yellow sticky cards are hung in the field with the upper margin similar with the plant.
- 5) Chemical control. Chemical control. ①Root irrigation; ②Partial control; ③Spray control; ④Smoking method

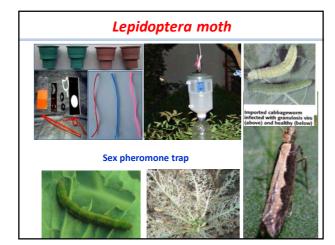
## Spider mite

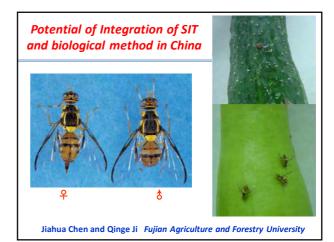
**DAMAGE** Mites suck cell contents from leaves, initially stippling leaves with a fine pale green mottling. As feeding continues, the stippling increases and leaves turn yellow with bronzed or brown areas; damaged leaves frequently fall.

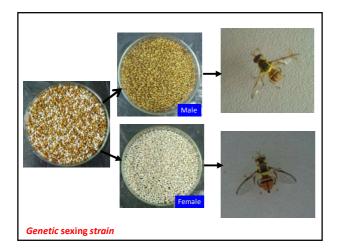


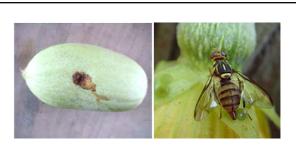
## **CULTURAL CONTROL**

Because spider mites feed on a large variety of plants, keep production areas free of weeds, which can serve hosts to the mites. Carefully inspect plants being brought into a new crop to ensure that they are free of mites.



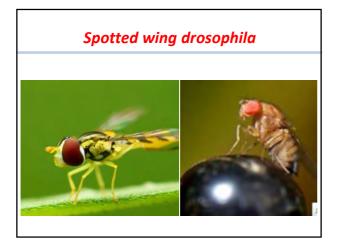


### **BIOLOGICAL CONTROL**


Many different species of predatory mites are available for control of the mites. *Phytoseiulus persimilis* is a commercially available predator of two spotted spider mite, and it has been used to control mite populations in greenhouses and field situations. It can reproduce faster than its prey, yet best results can be obtained when it is released into the crop before the spider mite populations have built up.












Melon fly (Bactrocera cucurbitae)

Protein hydrolyzate and other attractants are used in the field.

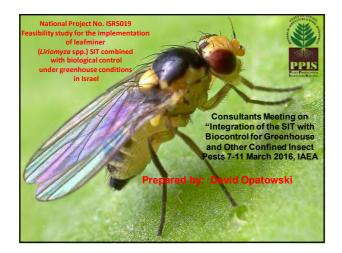


# Leaf miner

It's possible to control through the integration of biological and SIT techniques, even though there are many steps to go.

- (1) bisexual reproduction
- (2) It's possible to realize the mass-rearing through artificial food

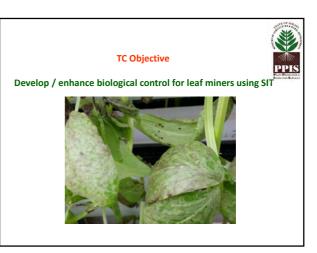
# Bemisia tabaci


Parthenogenesis is a key factor influencing the effective applications of SIT techniques
 No artificial food, restricting the mass rearing

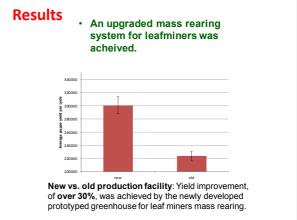


# Constraints to the integration of biological control and SIT

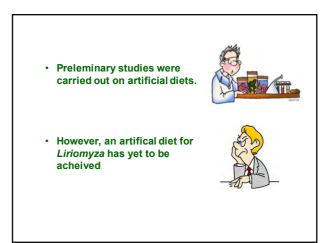
- No SIT techniques have been developed for most other important insects in greenhouse up to now
- The mass-rearing of the parasitoids or predators are limited in China
- □ The environment in greenhouse is not helpful for the population establishment of the natural enemies
- □ The oriental fruit fly and the melon fly has the SIT techniques, but their parasitoids are still in the laboratory
- □ The control effects of integration of biological control and SIT technique needs to be evaluated.

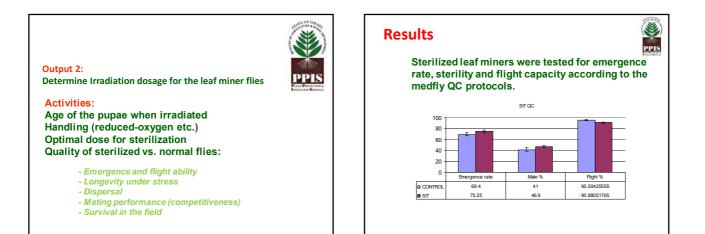


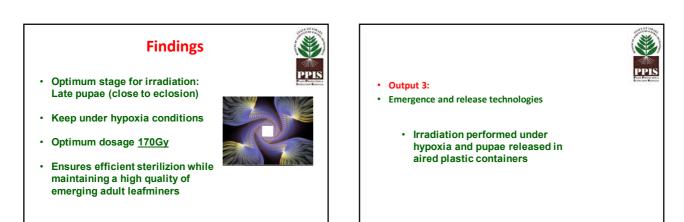






- Major species in Israel
- Highly polyphagous pest of vegetables and flower crops, widely distributed throughout Asia, Europe and Africa
- A worldwide pest, is not considered a quarantine pest in any country but Ireland, therefore SIT could be useful for many countries.

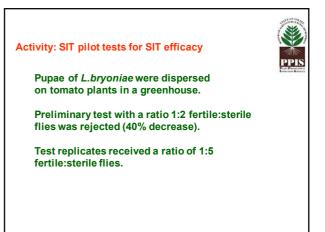


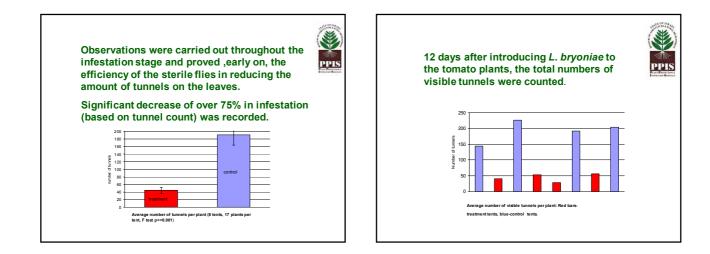



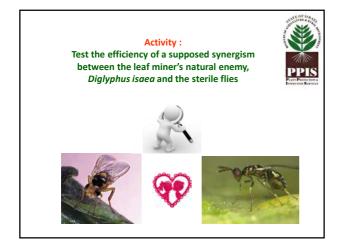


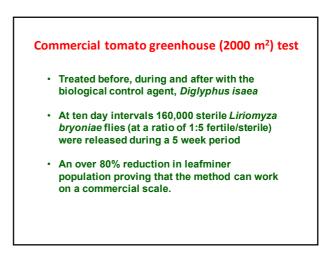


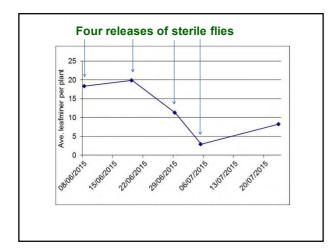




• Output 4:


 Perform pilot tests assessing the effect of releasing sterile leafminers in greenhouses













# Other Issues for consideration on the use of SIT in confined areas (1)

- **Production numbers** would have to be much higher than equivalent, if available, natural enemies.
- If a natural enemy is available will need to perform equivalency tests N/E vs. SIT and also synergy.

# Other Issues for consideration on the use of SIT in confined areas (2)

- **Commercial viability** vs. traditionally (sprays) will also need to be taken into account.
- Perhaps better to concentrate on pests that have no efficient natural enemies – <u>BUT</u> then mass rearing knowledge is likely to be lacking.

