MAIN HIGHLIGHTS ON CHERNOBYL OVER 30 YEARS AND CURRENT SITUATION

B.J Howard

Chernobyl USSR, 1986

Unit 4

Centre for

- Atmospheric release (PBq)
 - ¹³¹I 1760; ¹³⁴Cs ~ 47, ¹³⁷Cs ~ 85; ⁹⁰Sr 10

Radioactive Iodine Food Chain

Start of growing season – cows on pasture

In spring 1986, children and adolescents in surrounding areas of USSR received substantial radiation doses to the thyroid due to the consumption of milk contaminated with radioiodine.

Deposition of ¹³⁷Cs in Europe

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

- More than 200,000 km² of Europe 'contaminated' with ¹³⁷Cs, mostly in FSU countries
- More than 5 million people live in 'contaminated' areas

Agricultural countermeasures – early phase

Partially effective in reducing radioiodine intake via milk

 lack of timely information about the accident and countermeasures, particularly for private farmers

Most effective countermeasures in the early phase

- exclusion of contaminated pasture grasses from animal's diet
- exclusion of milk (with further processing) based on radiation monitoring data
- Feeding animals with "clean" fodder in some affected countries, but not in USSR due to lack of supply

Slaughtering of cattle was unjustified from a radiological point of view

hygienic, practical and economic problems (wastes)

Existing situation - features of contaminated USSR

Population intensity	Moderate, no pressure to use land
Terrain	Flat, forested and agricultural
Intensity of agriculture	Low - medium
	- Collective farms
	- Private subsistence farmers
Key products	Milk, meat, grain, potatoes
Lateral movement across landscape	Low

Initial reduction in transfer due to weathering, physical decay, vertical migration of radionuclides down the soil and reductions in bioavailability in soil

> Soil to plant transfer important with strong time dependence - ¹³⁷Cs and ¹³⁴Cs

Long term ¹³⁷Cs in meat and milk - important contributors to internal dose

Characteristics of the contaminated landscapes -

Internal exposure pathways

Fraction of soils with high organic matter or sandy content	Moderate to High
K fertiliser usage	Very low to moderate
Radiocaesium availability for root uptake	Moderate to very high
Transfer to animal products	Moderate to High
Intake of local food	High to very high
Intake of wild food	Moderate to very high

Agricultural Environment - RCs

[ag(Cs), 10⁻³ m²/kg

Cs-137 in foodstuffs affected by:

- deposition density
- chemical form
- soil types
- management practices
- type of ecosystem
- Major persistent problems
- extensive systems with high organic or sand content soils
- subsistence farmers with privately owned dairy cows grazing in unimproved pastures

Agricultural environment - other radionuclides

- ⁹⁰Sr, plutonium isotopes and ²⁴¹Am, mostly insignificant in terms of human dose
- Sr-90 could contribute to internal dose mainly in the exclusion zone
 - increase with time

Dynamics of ⁹⁰Sr transfer factor into grass in the 30-km zone

(Kashparov et al., 2004).

3.7 KBq/m²

^{239/240}Pu >

Extensive systems – "wild" animals

Forests

- high RCs uptake by mushrooms, berries
- persistent recycling of RCs for several decades
- wood ash can contain high amounts of RCs
- External doses to workers needs to be considered
- importance of forests contribution to radiological exposures of population increased with time
- timber etc. gives only small contribution to exposure
- radiological consequences of forest fires unlikely to be high except possibly close to the fire

Cs uptake into mycorrhizal, parasitic, saprophytic mushrooms Barnett et al 1992

Aquatic bodies

- Rapid reduction in [RCs] due to dilution, reduction in bioavailability in catchment and settling to sediments
- Lower weathering rate of fuel particles than in terrestrial ecosystems
- The most contaminated lakes have no inflowing and outflowing streams and an organic soil catchment
 - Iong ecological half lives and potential significant source of dose to local population

PATHWAYS LESSONS LEARNED

- Severe impact of I isotopes in private milk
- High and sustained transfer of RCs to animal products in some areas close and far from the NPP
- Importance of soil type, extensive systems and wild food identified
- Deposition density plus soil type both critical
- Models giving site-specific spatial and temporal predictions are invaluable

Variation in relative internal and external doses

Internal and external doses in some areas affected by the Chernobyl accident normalized to ¹³⁷Cs contamination density, 1996-2000, MBq m² (Fesenko et al., 2000)

Contamination of agricultural animal products often a major contributor to ingestion dose

% contribution to daily ¹³⁷Cs intake by population of Milaych, Ukraine (ECP9)

Centre for

Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Remediation strategy

- Some hundred of thousands of people were living in areas with > 1 mSv/y
 - Need to remediate to reduce their effective dose rate - long term goal <1mSv/y
 - To enable residents of contaminated areas to return to a normal life
 - Secondary concern to return people to evacuated areas
- weighting of averted dose versus remediation costs was an important part of the remediation

strategy

Chernobyl designation of remediation areas

Temporary permissible	1986 – 100mSv	
levels for effective	1987 – 30 mSv	
annual dose	1988- 1989 – 25 mSv	
	1991- 1mSv	Sat dafinition of
	2.2	Set demition of
Ambient dose rate	corresponding to lifetime	contaminated land at 37
μSv/h	additional dose of 350 mSv	kBq/m²
	(applied in 1989)	Identified settlements
		where annual dose rate

was	> 1	mSv.	Izrael	1990
-----	-----	------	--------	------

¹³⁷ Cs kBq/m ²	Designation
Below 37	Not contaminated
37 - 185	Remediation for areas with "sensitive soils" (eg. wet peat, acid sandy)
185 - 555	Remediation applied for sandy soils and light loam soils
555 - 1480	Full scale remediation
>1480	No economic activity

Permissible levels in food – changes with time

TPL	4104-88	129-252	TPL-88	TPL-9	1
Date of adoption	06.05.1986	30.05.1986	15.12.1987	22.01.19	91
Nuclide	131 I	β-emitters	$^{134}Cs + ^{137}Cs$	$^{134}Cs + ^{137}Cs$	⁹⁰ Sr
Milk	370-3700	370-3700	370	370	37
Dairy products	18500-	3700-18500	370-1850	370-1850	37–185
	74000				
Meat and meat	_	3700	1850-3000	740	_
products					
Fish	37000	3700	1850	740	_
Eggs	_	37000	1850	740	_
Vegetables, fruits,	_	3700	740	600	37
potato, root-crops					
Bread, flour, cereals	-	370	370	370	37

Country, International	EU	Belarus	Russia	Ukraine
body				
Year of adoption	1986	1999	2001	1997
Milk	370	100	100	100
Infant food		37	40-60	40
Dairy products	600	50-200	100-500	100
Meat and meat products		180-500	160	200
Fish		150	130	150
Eggs		_	80	6 Bq/egg
Vegetables, fruits,		40-100	40-120	40–70
potato, root-crops				
Bread, flour, cereals		40	40–60	20

Agriculture remediation measures

emediation for animal products	
Clean feeding	L – combined
Live monitoring of domestic animals	ffective and p
Prussian Blue binder to animals	leasure
emediation of agricultural land	
Radical improvement – ploughing, reseeding,	
additional fertilisation	- En O
Soil treatment with additional K and P	
Soil amendment with liming	
Application of sorbents and organic fertilisers	
Drainage of wet peats	1 CAN

highly oractical

Avoided measures which generated large amounts of waste (eg top soil removal)

Extensive agriculture remediation measures

- Free ranging animals
- New binder delivery systems
- Increase food action levels
- Live monitoring

Amounts of milk and meat exceeding action levels

tonnes

NB Russia includes private produce

Forest remediation

Restrictions on

 Access, harvesting of food products, collection of firewood
Local monitoring
Fire prevention

Optimisation approach

Site specific settlement information on:

- Spatial variation in contamination
- Which mushroom species to avoid
- Where and when to collect wood, wild products and hunt game animals
- Tree felling schedules

AQUATIC BODIES - LESSONS LEARNED

- Restrictions on consumption of fish remain, in a few cases for several decades (closed lakes)
 - but such restrictions not always adhered to

J. Smith

- measures generally ineffective and expensive and relatively high exposures to implementing workers.
- Restrictions on consumption of freshwater fish
- Public information important

CURRENT SITUATION

- Since 1991, the proportion of animal products with [¹³⁷Cs] exceeding action levels has been <10% of the gross output from contaminated areas.
- Technologically based remediation measures applied to forests and surface waters not practicable on a large scale
- Since mid-1990s, use of agricultural measures considerably reduced. Application rates inadequate for both conventional food production and remediation so some increase in ¹³⁷Cs transfer occurred.
- Remediation ongoing in some areas with still high radiocaesium transfer from soil to vegetation

Soil amendments – decline with time

- Since mid-1990s, use of agricultural measures considerably reduced.
- Application rates inadequate for both conventional food production and remediation

some increase in ¹³⁷Cs transfer

Use of Prussian Blue

Settlement based information

The three fSU countries have developed "catalogues" for each remediated settlement – compiles annual effective doses due to both external radiation and ingestion of radiocesium, -strontium and plutonium

Map of the 541 study settlements, with dose of the representative person from ¹³⁷Cs as calculated with *ReSCA* for 2004 (Jacob et al 2009 STOTEN 408)

REMEDIATION CURRENT SITUATION

- Most land previously contaminated with radionuclides is now safe for habitation and economic activities
- Still many people in settlements in Belarus and Ukraine with annual effective dose > 1 mSv
- However, in Chernobyl Exclusion Zone and isome limited areas of fSU some restrictions on land-use likely to be retained for decades
- In some areas with still high ¹³⁷Cs transfer from poor sandy/peaty soils to vegetation remediation measures remain efficient

Changing emphasis with time

- Whilst cost benefit analysis was key factor during first decade, importance of • considering social aspects increased thereafter.
- Long term adherence to banning the collection and/or consumption of products has reduced.
- Focus on providing readily understandable information and guidance on how people can themselves reduce their radiological risk

Countermeasure	Belarus	Russia	Ukraine
Radical improvement	High	High	High
Drainage	Low	Low	High
(for wet peat only)			
Prussian blue	High	High	Moderate
Supply clean milk	Low	Low	Low
Clean feed for animals	Moderate	Moderate	Moderate
Mineral fertiliser for	Moderate	Moderate	High
potatoes			
Restrict mushroom	Low	Low	Low
consumption			
Food monitors	Moderate	Moderate	Moderate
Removal of soil	Low	Low	Low
	Fese	enko et al, 2006	

Ranking of practicability

ЗL

REMEDIATION LESSONS LEARNED

- Remediation planning and identification of priorities for implementation essential
 - facilitated by available expertise in USSR
- Early application of previously identified suitable measures can substantially reduced internal doses to the population
- Implementation of effective measures may depend on availability of pasture and fodder – seasonally dependent
- Remediation may be required for many years after contamination occurs, depending on the soil types and agricultural production characteristics of the contaminated area
- Benefit of models which include effect of remediation measures (eg. ReSCA)

REMEDIATION LESSONS LEARNED

- Optimizing requires consideration of technical (e.g. effectiveness, cost, feasibility), environmental and social (e.g. acceptability, opportunities for self help) factors
 - varies between countries
- Importance of local monitoring and information, trusted professionals
- Success of remediation in private sector of subsistence rural farmers dependent on compliance of rural population - can only be achieved by:
 - involvement in decision making process
 - providing good information

Centre for

Ecology & Hydrology

- opportunity to discuss the implications of their decisions
- Best measures depend on agricultural, environmental conditions and social/cultural perspectives

