

Wolbachia Aedes- An additional Tool to Control *Aedes aegypti* in Singapore

Third FAO/IAEA International Conference on Area-wide Management of Insect Pests

Ng Lee Ching Environmental Health Institute Singapore

Dengue Control System in Singapore

Integrated Dengue Surveillance for Decision Support

Gravitrap Aedes Adult Surveillance

Weekly data from 34 sentinel sites

Outbreaks associated with switch in predominant serotype

Temporal and Spatial Modelling to support operations

Early warning of outbreaks

Environ Health Perspect; DOI:10.1289/ehp.1509981

Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore

Yuan Shi¹, Xu Liu¹, Suet-Yheng Kok¹, Jayanthi Rajarethinam¹, Shaohong Liang¹, Grace Yap¹, Chee-Seng Chong¹, Kim-Sung Lee¹, Sharon S.Y. Tan², Christopher Kuan Yew Chin¹, Andrew Lo³, Waiming Kong⁴, Lee Ching Ng^{1,5}, and Alex R. Cook^{6,7}

Facilitate preparedness for public health response

Dengue Risk Map

80% of cases fall in risk groups 3 and 4

Impact on Dengue Transmission

3 years of seroprevalence studies at EHI:

Future complementary vector control tool, part of adaptation to climate change

Studies on the feasibility of *Wolbachia* for the suppression of *Ae. aegypti* population in Singapore

3 Tracks:

Effectiveness Scientific studies for the implementation of a *Wolbachia*-based suppression strategy to control *Ae. aegypti* population in Singapore

Risk Assessment Assessment to ensure the technology is safe and to identify unintended secondary impact of *Wolbachia-Aedes* and recommend mitigation measures

Community engagement

Engagement and consultation of oversea and local experts and local stakeholders to identify knowledge gaps that could result in potential risk of failure

Development of Wolbachia Aedes aegypti strain - wAlbB

Michigan State University

100% cytoplasmic incompatibility (>30,000 eggs from 306 females)
Mating competitiveness and mating vigor equivalent to WT

Insecticide resistance of wAlbB-Sg equivalent to WT

Calibration study sites – release of male Wolbachia-Aedes

Monitoring traps set up at release sites

Gravitrap collects female adults for population monitoring

- Attractant: hay infusion
- Trap: sticky lining

Ovitrap collects Aedes eggs from the field monitoring for estimating hatch rates

- Attractant: hay infusion
- Trap: Paper

Fan trap: passive trap for catching released males and field mosquitoes (estimate **dispersal and field population density**)

Horizontal dispersal of wAlbB-Sg

- Most male Wolbachia-Aedes (90%) caught within 40m from release point
- Some were captured by the furthest traps set at 140m
- Mean distance travelled by male Wolbachia-Aedes (60m)

Vertical dispersal of wAlbB-Sg

Male *w*AlbB-Sg well distributed following regular multi-point releases from ground level

Longevity of wAlbB-Sg

Probability of daily survival of male *Wolbachia-Aedes* (mean = 0.78)

Release strategy to assess effectiveness

Nee Soon East

Reduction of hatch rates of eggs collected from Nee Soon site

Clear reduction in spatial hatch rates in each site

Decline in hatch rates correspond with high release ratio

Lower number of positive ovitraps, increase proportions with 0% hatch rates

Nee Soon: "High" hatch rates in EW17 likely due to "infiltration" - 4 ovitraps had 100% hatch rate

Blk	Floor	No. of eggs
217	6 th	55
221	3 rd	120
224	9 th	8
226	1st	62

- Ovitraps with high hatch rates are in the periphery of the area.
- Could be due to female mosquitoes that have flown in from surrounding areas and have not mated with *Wolbachia-Aedes* males.

Blocks with positive ovitraps

Tampines West

Reduction of hatch rates of eggs collected from Tampines sites

As of 2017 Eweek 17

Overall reduction in Ae. aegypti hatch rate in each block

Lower number of positive ovitraps, increase proportions with 0% hatch rates

Variable Release Ratio due to Fluctuation of Field Population

Decreased number of urban female *Aedes aegypti* mosquitoes caught in sites with *Wolbachia-Aedes* releases

No significant difference in *Ae. aegypti* population in release sites, in contrast to significant increase in control sites

Before-After-Control-Impact Analysis (BACI)

Significant change in differences (0.2 *Ae. aegypti* per trap) between control and release site post-release (p-value<0.001)

RADSEQ for understanding mosquito movement

Estimate the rate of reinvasion of wild type *Aedes* population after suppression/elimination by *Wolbachia*-Aedes

RADSEQ: Restriction site associated DNA sequencing showing distribution of different genetic cluster of *Aedes aegypti*, at ultra fine levels

Nationwide Online Survey and Face-to-face Street Survey (Pre-release Survey Results)

Nationwide Online Survey (respondents skewed towards adults <age 40)

Face-to-face Street Survey (targeting respondents >age 40)

Household Perception Survey at Nee Soon East (Post-release Survey Results)

of households have heard of Project *Wolbachia* – Singapore First heard of Project *Wolbachia* – Singapore through: -News (35%) -Publicity materials (33%) -Door-to-door house visits by NEA (16%) -Word of mouth (8%) -*Wolbachia* outreach events (4%) -Internet and social media (4%)

92%

of households had no objections with the release of male *Wolbachia-Aedes aegypti* mosquitoes in their neighbourhood

84%

of the households did not notice more mosquitoes around Tampines West

Risk Assessment and stakeholders engagements since 2012

Sharing and promoting the understanding of *Wolbachia* technology through lectures, talks, and community activities

Target groups include the academic, medical and government communities

SCIENTIFIC CONTRIBUTIONS

How Safe is *Wolbachia* for *Aedes* Control?

A risk assessment for the use of male *Wolbachia*carrying *Aedes aegypti* for suppression of the *Aedes aegypti* mosquito population

Ng Lee Ching^{1,2} (Corresponding Author), Liew Christina¹, Gutierrez Ramona¹, Chong Chee Seng¹, Tan Cheong Huat¹, Yap Grace¹, Wong Pei Sze Jeslyn¹, Li Meizhi Irene¹

ENB Quarterly | Vol 43 (1)

Acknowledgement

Environmental Health Institute

WHO Collaborating Centre for Reference and Research of Arbovirus and their Associated Vectors

NEA 3P Department NEA Corporate Communication Department

