RNAi strategies in support of mosquito SIT applications

Steve Whyard

Department of Biological Sciences University of Manitoba Winnipeg, Canada

Presentation to: Third FAO/IAEA International Conference on Area-wide Management of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques

May 23, 2017

Two serious disease vectors: *Aedes aegypti* and *Ae. albopictus*

- Aedes aegypti
 - Urban, endophilic vector
 - Preferentially bites humans
 - Tropical & semitropical
- Aedes albopictus
 - Peri-urban and rural vector
 - Feeds readily on mammals and birds
 - Invasive species to Americas
 - Tropical to temperate
- Both transmit dengue, yellow fever, Chikungunya, and Zika viruses

Mosquito control

- Biocontrol
 - Mosquitofish (Gambusia affinis)
- Trapping/Baiting
 - Chemical attractants to lure mosquitoes
- Chemical control
 - Larvacides
 - Adulticides

Current chemical pesticide issues:

1. Increasing resistance to pesticides

More resistant species

Higher levels of resistance

2. Off-target effects of pesticides Broad-spectrum kill many non-target species

Sterile Insect Technique - a biological, species-specific control method

Conventional SIT

Problems associated with previous mosquito SIT programs:

- Radiation-induced sterilization might weaken males
- Sex sorting was time-consuming and not fail-safe

Oxitec (and others) - producing genetically-modified sterile mosquitoes

• GM technology will require regulatory and public approval

Can we enhance the Sterile Insect Technique, without using Genetic Modification?

- Non-radiation approach
- Non-GM approach
- Male-only production

Adaptable to other species?

One approach – RNA interference-mediated sterilization and sex-sorting

NO GIRLS

╋

RNA interference in insects: what we know and don't know...

 RNAi - targeted destruction of mRNA = gene silencing

Feeding dsRNA to mosquitoes

- Ingested dsRNA can silence genes in the mosquito gut
- The dsRNA can escape the gut and silence genes in other tissues (systemic RNAi)

mosquito larva

Delivery of dsRNA to insects: Feeding – transient RNAi /pest control

	Extent of RNAi after feedi			eding	
	Order	Genus	Gut genes	Non-gut genes	# genes
	Diptera	Drosophila	+++	+	19
	[Aedes	+++++	++	>100
	_	Culex	++	+	8
	Coleoptera	Coccinella	+++	+	3
		Tribolium	+++	++	7
		Tenebrio	+++	?	2
	Lepidoptera	Manduca	+	?	2
		Spodoptera	+	?	2
		Plutella	+	?	2
	Hemiptera	Aphis	+	+	4
		Acyrthosiphon	+	+	8
		Myzus	++	+	8
		Lygus	+	+	1

Ingested dsRNA can kill mosquito larvae - not all genes are equally affected

Producing dsRNA in microorganisms

- Microorganisms could serve as biofactories to produce dsRNA
- Some insects readily consume bacteria, yeast
- Release of transgenic organisms may not be acceptable
- Heat-killed bacteria still provided sufficient dsRNA to kill mosquito larvae

Mass production of dsRNA

- Intact bacteria expressing dsRNA
 1 L culture enough to treat 10,000 mosquitoes
- RNA extracted from bacteria
 - 1 L culture enough to treat 5,000 mosquitoes
- Intact yeast expressing dsRNA
 - Currently testing whether mosquitoes prefer yeast or bacteria and which vector can provide more dsRNA
- Buy dsRNA companies now making dsRNA cheaply - \$100/g

Ingested dsRNA to produce sterile male mosquitoes

- Target mRNAs for spermatogenesis
- Target female-specific mRNAs

- larva ingest dsRNA
- dsRNA exits gut and enters target tissues
- Goals:
 - female larvae die
 - males are sterile

- adult females ingest dsRNA
- dsRNA exits gut and enters ovaries
- Transgenerational RNAi:
 - female progeny die
 - male progeny sterile

Knockdown of male fertility genes in mosquitoes

gene	Sterile / competitor?
bol	Yes / Yes
tud	Yes / No
zpg	Yes / Yes
AAEL004231	Yes / Yes
AAEL006975	No
AAEL007434	Yes / No

Ideal target genes:

- Late stage spermatogenesis e.g. sperm motility •
- Genes not expressed in other tissues in males •

- 1. RNAi is dosedependent
- 2. Combining different dsRNAs improves impact

Still need to identify the precise functions of the various spermatogenesis genes

Feeding dsRNA to larvae to prevent female development

Alternative approach to transgenics

• feeding female-specific dsx dsRNA to insects:

Other female-specific target genes

- Transcriptomic analyses to identify female-specific transcripts in larvae or pupae
- Currently testing several new candidate genes

development

female

male

Female specific gene targeted

Testing the sterile males in population cages

- 1. Fed larvae with dsRNAs
- Targeting sperm motility
- Female isoform of dsx

2. Set up mating competition cages with different densities of sterile males

osquitoes

Aedes aegypti vs Aedes albopictus

Developing SIT for other mosquito species

Current progress:

•	Find orthologues of target genes	14
	 Using bioinformatics to search available databases, or: 	
	 Designing primers for degenerate, low stringency PCR 	
•	Prepare dsRNA	8
•	Injecting larvae/pupae	3
•	qRT-PCR to validate RNAi	3
•	Mating bioassays	-

Applying RNAi sterility to other insects: Queensland fruit fly

- Feeding dsRNA to young adult males reduced their fecundity by as much as 90%
- Feeding larvae also can sterilize males

Technical challenges for oral RNAi (1)

Some insects can degrade dsRNA using dsRNA-specific nucleases

Larval gut

Adult gut

Counter-measures

- Target different developmental stage
- Dual knockdown of nuclease and target RNA
- Microcarriers that protect dsRNA

Water

Chitosan nanoparticles improves RNAi efficacy

Technical challenges for oral RNAi (2)

Balancing time of feeding with timing of dsRNA exposure

How might RNAi-mediated SIT mosquitoes be used?

- Insect factories fully automated!
 - Need to develop automated dsRNA treatments
- Could be adapted for any population (not just lab colonies)
 - might improve efficacy if females show preference for local males
- Baited oviposition traps
 - Lure females to oviposition traps
 - Larvae reared in traps fed sterilizing dsRNAs

What's next?

- Identifying more target genes
 - Looking for more genes (essential female genes, male fertility genes)
 - More combinations of dsRNAs

- Developing feeding formulations & microcarriers that maximize RNAi
 - Understanding how dsRNA moves from cell to cell
- Developing higher throughput production methods

RNAi-mediated SIT

- A non-radiation method of producing sterile males
- A simpler method of sex-sorting than mechanical methods
- A non-GM approach to the new SIT methods
- Adaptable to many species
- Can be used with field-caught strains minimizes assortative mating issues

Thanks to:

• My students and staff:

Dave Giesbrecht	Dave Boguski
Carlos Cruz	Roohollah Abbasi
Cass Erdelyan	Aditi Singh
Alison Tayler	Parker Lachance

- My collaborators
 - Chris Hardy, Owain Edwards (CSIRO)
 - Nigel Beebe (CSIRO, U Queensland)
- My funding support:
 - NSERC
 - NHMRC Australia
 - Horticulture Innovation Australia

Horticulture Innovation Australia

