

METHODS TO QUANTIFY INVASIVE PEST RISK AND SOCIOECONOMIC IMPACTS FOR OBJECTIVE REGULATORY DECISIONMAKING: CASE STUDIES ON AREA-WIDE-RELATED PROGRAMS

TRANG T. VO

Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 24 May, 2017

APHIS' Mission

Authorize entry low-risk commodities

Exclude high-risk commodities

- Regulate
- Inspect
- Detect/respond

Issues Confronting APHIS

- What constitutes a significant pest?
- When should Federal action be taken against a pest?
- Are our actions producing the intended results?

Decision-making Objectives

- 1. Prioritize pests consistently across safeguarding continuum.
- 2. Evaluate what actions to take and where to draw the line.
- 3. Prioritize pest programs.

Measurement Issue

- Lack of common framework for measuring risk (expected impacts) along the safeguarding continuum
- Risk has been traditionally viewed as the likelihood of pest introduction

Risk Definition

Economic perspective on risk:

Risk implies future uncertainty about deviation from expected outcome.

Risk (or expected impact) = Likelihood x Consequences

United States Department of Agriculture

USDA

Analytical Spectrum

New Model for Prioritizing Pests Based on Impacts

New Model for Prioritizing Pests

Prioritizing pests based on *predictive impacts*.

Example: Prioritizing pests for survey

United States Department of Agriculture

USDA

New Model for Prioritizing Pests

- Identified over 100 non-native arthropods and 80 pathogens that have become established in the United States
- Each pest/pathogen was analyzed *as if it were not present in the U.S.* using the potential questions

New Model for Prioritizing Pests

- Multiple choice yes/no questions (criteria) *predictive of impacts*
- Selected factors considered in evaluating impacts:
 - biology (unmitigated damage; frequency/severity of outbreaks)
 - research and management
 - current production practices

New Model for Prioritizing Pests

 Team of entomologists/pathologists & economists classified each pest/pathogen in terms of its <u>observed</u> <u>impacts</u> in the United States

New Model for Prioritizing Pests

- Statistician compared predicted results to observed impacts
- Each question were tested as to how well it predicted actual impact; non-predictive questions were removed
- Weighted each question by its predictive power

Sample Prioritized Pest List

Risk	Scientific name	Common Name	Model	Predicted	Prob. pest	Prob. pest	Prob. pest	95% CI of
Grou	o			pest	will cause	will cause	will cause	prob.
				impact in	high	moderate	low	high
				บร่	impacts	impacts	impacts	impact
Predi	Predicted to be a HIGH impact pest in the United States (low uncertainty)							
А	'Candidatus Phytoplasma	Australian grapevine	Pathogen	High	69.8%	27.6%	2.6%	57.50% ~ 91.48%
	australiense' 16SrXII-B	yellows		5				
А	'Candidatus Phytoplasma	Almond witches'	Pathogen	High	87.1%	12.0%	0.9%	68.35% ~ 93.75%
	phoenicium' 16SrIX-B	broom						
A	<i>'Candidatus</i> Phytoplasma vitis' 16SrV-C	Flavescence dorée	Pathogen	High	88.5%	10.7%	0.8%	80.82% ~ 94.82%
А	Cronartium flaccidum	Scots pine blister rust	Pathogen	High	91.5%	8.0%	0.6%	88.49% ~ 96.24%
A	Eurygaster integriceps	Sunn pest	Arthropod	High	76.0%	20.7%	3.3%	63.72% ~ 80.50%
А	Harpophora maydis	Late wilt of corn	Pathogen	High	76.3%	21.8%	1.9%	71.17% ~ 91.98%
А	Hymenoscyphus fraxineus	Ash dieback	Pathogen	High	92.5%	7.0%	0.5%	84.62% ~ 98.39%
A	Paysandisia archon	South American palm borer	Arthropod	High	79.6%	17.6%	2.7%	62.47% ~ 86.97%
А	Phytophthora alni	Alder root and collar rot	Pathogen	High	76.3%	21.8%	1.9%	50.88% ~ 91.98%
А	Phytophthora kernoviae	Beech bleeding canker	Pathogen	High	82.8%	15.9%	1.3%	65.40% ~ 94.49%
A	Raffaelea quercivora	Japanese oak wilt	Pathogen	High	76.3%	21.8%	1.9%	72.52% ~ 95.99%
А	Ralstonia solanacearum race 3 biovar 2	Bacterial wilt	Pathogen	High	66.9%	30.2%	2.9%	57.50% ~ 84.62%
А	Thaumatotibia leucotreta	False codling moth	Arthropod	High	67.3%	27.6%	5.0%	53.39% ~ 75.96%

CRITERIA FOR FEDERAL ACTION

* Economic significancy is based on established thresholds for acceptable level of risk.

Decision Rule for Federal Response

Federal response is efficient when: (Losses without program – losses with program) – program costs > 0

Non-economic Criteria for Federal Action

- Types of damages where **Federal intervention** is justifiable (e.g., environmental versus commercial pests, or multi-host versus single-commodity pests);
- Availability of control tools;
- Availability of funding from non-APHIS sources;
- Inability of industry/stakeholders to organize;
- Statutory directives.

Impacts of Pests and Management

Losses/costs of Pest X and responses considered for stakeholders (affected and unaffected producers and exporters, APHIS, and state governments):

- Direct pest damage on crop yields
- Additional treatments costs incurred by host producers
- Indirect impact on export markets due to presence of Pest X
- Federal and state program costs

Economic Commodity Models

- Partial equilibrium models of major agricultural commodities
- Vertical linkages along supply chain e.g., between fresh and processed sectors
- Consideration of producing and non-producing regions
- International and domestic trade

Economic Commodity Models

Consideration of *market prices* enables estimation of impacts on all affected entities in society, including:

- Producers in affected areas
- Producers in unaffected areas
- Consumers
- Trade

Commodity Models Developed

- Small grains wheat, soybean, corn, sorghum, barley, oats, rice, forage
- Nursery stock
- Seed (grains)
- Non-citrus tree fruits pear, apple, peach, plum, sweet cherry, tart cherry
- Citrus fruits orange, grapefruit, tangerine, lemon
- Potato

USDA United States Department of Agriculture

BioEconomic Framework

Sample output – Welfare Impacts of False Codling Moth Outbreak in CA Orange Sector, Alternate Management Scenarios^{1/}

Economic Sectors	Region	No Mitigation (\$ million)	Pesticides treatment (\$ million)	Pesticides & cultural control (\$ million)	Area-wide eradication (\$ million)
Consumers - fresh oranges	All	-507	-32	-11	-0.4
Consumers - processed oranges	All	51	-2	-0.8	0.1
Retail - fresh oranges	All	-1,553	-97	-33	-1
Retail - processed oranges	All	35	-1	-2	-0.2
Wholesale - fresh oranges	All	-299	-26	-11	-2
Wholesale - processed oranges	All	-9	-10	-4	-0.1
Orange growers	All	1,043	91	-16	0.1
	CA	1,063	74	-23	-1
	AZ-TX	-3	3	2	0.9
	FL	-17	14	5	0.1
TOTAL WELFARE IMPACT	ALL	-1,240	-75	-77	-4

^{1/} Over 30 years, undiscounted

Results of Impact Analysis of the Emerald Ash Borer Program

Estimated damages, losses, and program costs	With Program (40.6 km) 44 years until colonization	With Program (52.9 km) 34 years until colonization	Without Program (240 km) 8 years until colonization	
	Present values in US\$ millions			
Damages from newly infested area until colonization	3,707	3,820	6,224	
Avoided losses (without program – with program)	2,517	2,404	-	
Program cost until colonization	692	619	0	
Net benefit (avoided losses – program cost)	1,825	1,725	-	
Benefit-cost ratio	3.6	3.9		

Results of Impact Analysis of the Pink Bollworm Program in the United States

Estimated values	With Program	No Program
	Present value over 33 years (US\$1,000)	
Losses (AZ, CA, NM, TX) ^{/1}	24,270	186,709
Avoided losses (with program – without program)	162,439	
Program costs	159,597	
Net benefits (avoided losses – program cost)	2,842	
Benefit-cost ratio	1.02	

^{1/} At the mean

How Measures are Used for Prioritizing Programs

Thank you!

QUESTIONS or COMMENTS, send to:

trang.t.vo@aphis.usda.gov