

"BOOSTED SIT" AS AN ADDITIONAL TOOL IN AW-IPM PROGRAMMES

Jérémy Bouyer

Third FAO–IAEA International Conference on Area-wide Management of Insect Pests, 22-26 May in Vienna

ERC Consolidator Grant LS9 Panel Applied Life Sciences and Non-Medical Biotechnology

THE CHALLENGE

The range of insecticides available for vector control

... worse in Europe!

Vector Control Intervention type	Number of WHO recommended insecticide families	Insecticide families	Number of molecules recommended in each family
Indoor Residual Spraying	4	Pyrethroids Carbamates Organophosphates DDT	6 2 3 1
Long-lasting insecticide treated nets	1 (+1)	Pyrethroids (Piperonyl butoxide)	3
Space Sprays	2 (+1)	Pyrethroids Organophosphates (Piperonyl butoxide)	4 1
Larvicides	5	Bacterial larvicide Benzoylureas Juvenile Hormone mimics Organophosphates Spinosyns	1 2 1 4 1

Resistance to pyrethroids and DDT is now widespread in many mosquito populations

Bayer CropScience

THE PRINCIPLE

INSECT MODELS

PUBLIC HEALTH

Mosquitoes Aedes albopictus

AGRICULTURE

Fruit flies Ceratitis capitata

PUBLIC & ANIMAL HEALTH

Tsetse flies Glossina palpalis gambiensis

THE TEAM

WHAT IS NEEDED TO RUN BOOSTED SIT? WHAT WILL WE ADDRESS?

Transfer of biocides during mating and impact on female fertility (PP & Bti & Densovirus)

Contamination technique

Resilience and transfer / mating

+

Transfer breeding sites & impact on fecundity

Impact of boosted SIT in semi-field and field trials with the best biocide (*Ae. albopictus* & *C. capitata*)

Semi-field trials

Experimental field trials

Relative impacts of SIT and boosted-SIT on population dynamics and resilience

Deterministic models

Mass rearing and irradiation procedures

FAO-IAEA IPCL

Sex separation method (female elimination) and quality control

Sexing of mosquitoes and handling procedures

2 strategies:

- Development of non-transgenic GSS
- RNAi sexing

Quality control of produced strains

Development of an automatic release machine

Review of regulatory issues, technical constraints and social acceptability of genetic control in Europe

PRELIMINARY RESULTS

Transmission of pyriproxifen

Transfer qualitatively confirmed (Gaugler et al., 2012)

An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites

R. GAUGLER, D. SUMAN and Y. WANG Center for Vector Biology, Rutgers University, New Brunswick, NJ, U.S.A. Strong increase of immature mortality around release sites of coated males (Mains et al., 2015)

RESEARCHARTICLE

Male Mosquitoes as Vehicles for Insecticide

James W. Mains, Corey L. Brelsfoard, Stephen L. Dobson*

MosquitoMate, Inc., Lexington, Kentucky, United States of America

Contamination technique

Contamination technique

Resilience and transfer / mating

Contamination technique

Resilience and transfer / mating

+

Transfer breeding sites & impact on fecundity

Contamination technique

Resilience and transfer / mating

+

Transfer breeding sites & impact on fecundity

Transfer of PP during mating (3FInnovation formulation)

Transfer of PP during mating (3FInnovation formulation)

Resilience and transfer / mating

+

Transfer breeding sites & impact on fecundity

Transfer of PP during mating (3FInnovation formulation)

Resilience and transfer / mating

+

Transfer breeding sites & impact on fecundity

Time of exposition (min)

No impact on male survival

Boosted SIT with pyriproxifen, a synergistic combined tactic to eradicate insects

(B) Synergistically combining a density-independent tactic to reduce population density with one that increases an Allee threshold. (Suckling et al. J Eco Entomol 2012)

Preliminary models

Density of sexually active females after 2 years of releasing R males (shown as a proportion of the carrying capacity K)

What about associating SIT to DENSOVIRUSES?

Copyright © 2016 Bouyer et al. Open Access article distributed under the terms of CC BY-NC-ND <u>Terms</u> and Conditions

The Lancet Global Health 2016 4, DOI: (10.1016/S2214-109X(16)00082-6)

Availability of infectious clones

AalDV2 (*Aedes albopictus* Densovirus strain 2)

+40% mortality (10e7 -10e8 viral genomes /larva)

Availability of infectious clones

High specificity

High specificity

TABLE II PATHOGENESIS OF AEDNV TO INVERTEBRATE SPECIES ^a					
Animal species	Number of individuals	Developmental stage	Route of infection	Pathologica effect	u .
Insects					_
Ae. aegypti	1140	Instar I–IV larvae	PO	+	
Ae. albopictus	550	Instar I larvae	PO	+	
Ae. togoi	450	Instar I larvae	PO	+	
Ae. vexans	419	Instar I, II larvae	PO	+	
Ae. geniculatus	233	Instar I larvae	PO	+	
Ae. caspius dorsalis	905	Instar I, II larvae	PO	+	
Ae. cantans	440	Instar II larvae	PO	+	
Ae. caspius caspius	90	Instar II larvae	PO	+	
C. pipiens pipiens	915	Instar I, II larvae	PO	+	
C. p. molestus	641	Instar I larvae	PO	+	
C. annulata	315	Instar I, II larvae	PO	+	
An. maculipennis	548	Instar I, II larvae	PO	_	
Chironomus sp.	142	Larvae	PO	_	
M. domestica	335	Instar III, IV larvae	PO, IL	_	
P. regina	210	Instar III, IV larave	PO, IL	_	
A. mellifera	200	Adult	PO	_	
G. mellonella	450	Instar III, IV larvae	PO, IL	_	
B. mori	115	Instar III, IV larvae	PO, IL	_	
A. crataegi	184	Instar III, IV larvae	PO, IL	_	
M. neustria	270	Instar III, IV larvae	PO, IL	_	Carlson at al 200
P. dispar	225	Instar III, IV larvae	PO, IL	_	Carlson et al. 200
Crustaceans					Advances in virus
Daphnia sp.		Adults and youth	PO	-	
Cyclops sp.		Adults and youth	PO	-	research
Worms		-			
Lumbricus sp.	50	Adults	SC	-	

EXPECTED BREAKTHROUGH

Fundamental expected breakthrough

Quantification of vertical and horizontal transfers of biopestcides in mosquitoes in natural populations

Quantification of the impacts of SIT \pm biocides on population dynamics & evolutionary response of target populations

→ generic conclusions on the sustainability of boosted SIT versus chemical control

Applied expected breakthrough

New biological control technique for mosquitoes

Operational data for stakeholders applying genetic control

Thanks!

European Research Council