



# Strengthening the implementation of Defence in Depth

#### Highlights from the Work of NEA/CNRA on the Activities, Priorities and Challenges Related to DiD

Dr Jean-Christophe Niel NEA/CNRA Chair Director General, ASN, France

IAEA headquarters, Vienna, 25th September 2014



- 1. Background
  - Concept and Context
  - Impact of the Fukushima Daiichi Accident
  - CNRA and others recent work
- 2. The role of the regulator in all levels of DID (concept definition, implementation...)
- 3. NEA/CNRA dedicated task group (on-going activity)
  - Objectives & scope
  - Deliverables & programme of work
  - Cooperation / interaction



1. Background: concept used for many years to secure high levels of safety - 5 independent barriers

|                        | Level of<br>defence in<br>depth | Plant Status                                               | Objective                                                                                                                                                                                      | Essential Means                                                                                                                                               |
|------------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prevention             | Level 1                         | Normal Operation                                           | Prevention of abnormal operation and<br>failures by design                                                                                                                                     | Conservative design, construction,<br>maintenance and operation in accordance<br>with appropriate safety margins, engineering<br>practices and quality levels |
|                        | Level 2                         | Operational<br>Occurrences                                 | Control of abnormal operation and<br>detection of failures                                                                                                                                     | Control, limiting and protection systems and<br>other surveillance features                                                                                   |
|                        | Level 3                         | Accidents                                                  | Control of accidents within the<br>design basis                                                                                                                                                | Engineered safety features and accident<br>procedures                                                                                                         |
| Mitigation             | Level 4                         | Beyond Design Base<br>Accidents e.g. core<br>melt accident | Control of severe plant conditions in which<br>the design basis may be exceeded,<br>including the prevention of fault<br>progression and mitigation of the<br>consequences of severe accidents | Additional measures and procedures to<br>prevent or mitigate fault progression and for<br>on-site emergency management                                        |
| Protective<br>Measures | Level 5                         | Significant off site<br>release of<br>radioactivity        | Mitigation of radiological<br>consequences of significant releases of<br>radioactive materials                                                                                                 | Emergency management and on-site and off-site emergency response                                                                                              |



1. Background: context

NFA

- Well established tool to assist designers, operators, regulators, etc. in their functions
- Complementary to other tools such as:
  - Deterministic evaluation
  - Probabilistic risk evaluation
- Used in combination provide a diverse synergistic approach to securing high levels of safety



- 1. Background: impact of the Fukushima Daiichi accident
  - Raised questions about DiD and its implementation
    - Implementation to be done more consistently
    - Importance of independence when implementing DID at different levels
    - Rare external site specific hazards should be addressed at all DiD levels
  - Concept remains valid, although there are some discussions on the end safety goals
    - Initiatives are being considered to look at the overall end safety goals considering social impacts



- 1. Background: CNRA and others recent work
- NEA Steering Committee Policy Debate on DiD, Oct. 2012
- NEA's CNRA/CSNI Workshop on DiD, June 2013
- IAEA International Conference on Topical Issues in Nuclear Installation Safety – DiD, Oct. 2013
- NEA/CNRA: on-going drafting of a Green Booklet on DiD in the light of Fukushima Daiichi accident (initial STG meeting on April 2014)



- 2. The role of the regulator in all levels of DID (concept definition, implementation...) (1/2)
- Prime responsibility is on the licensee
- The regulator ensures that:
  - At levels 1, 2 & 3, the licensee / operator discharges its role of designing, constructing and operating plant safely
  - At levels 4 & 5, that design and operational means contribute to limit risks of massive off-site radiological releases
- Importance of prevention AND mitigation (including rare events)



- 2. The role of the regulator in all levels of DID (concept definition, implementation...) (2/2)
- End safety goal to be extended to include prevention of severe accidents, of significant releases of radioactive materials and of social disruption
- Need for Regulators to maintain their Technical Capability, Independence and Credibility in these different roles



- 3. NEA/CNRA dedicated task group
  - Objective & scope to:
    - Explain the background, concept and context of DiD
    - Provide a consensus on those selected topics in scope
    - Enhance guidance on these topics
    - Make recommendations to enhance the implementation & use
  - Cooperation / interaction
    - IAEA
    - WENRA
    - NEA Committees
    - various regulatory bodies
    - INSAG
  - Deliverable: final draft Green Booklet May 2015

NEA



#### Scope / outline of the Green Booklet (1/2)

- 1. Introduction to the topic and Green Booklet
- Description of Basic DiD concept, its principles and definitions and relationship to PSA, etc as safety decision-making tools
- 3. Considerations about DiD arising from Fukushima Daiichi Nuclear Accident, e.g.:
  - a. Practical Elimination concept and relationship with other safety goals
  - Structure and Independence of levels, relationship of levels to plant and failure states, design basis and design extension conditions, use of margins/confidence levels/reasonableness, acceptance criteria
  - c. Impact of common mode failures
  - d. Optimisation of prevention and mitigation
  - e. Minimisation of social disruption

#### 4. Challenges to its use such as:

- a. New and emerging technology
- b. External Hazards and uncertainty
- c. Role of PSA
- d. Relationship to safety categorisation
- e. Consistent use in a regulatory body
- f. Harmonised use and understanding by nuclear regulators across the world
- g. Public confidence use of terms such as practical eliminate and independence
- h. Determining when to stop enhancing DiD



#### Scope / outline of the Green Booklet (2/2)

- 5. Importance and considerations for robust emergency arrangements and post-accident management off-site
- 6. Guidance on its application for:
  - a. Operating reactors
  - b. Multi-unit sites
  - c. New reactors
  - d. Advanced reactors
  - e. Ponds and other storage facilities for spent fuel
  - f. Other nuclear facilities
- 7. Wider uses of DID concepts to secure nuclear facilities such as:
  - a. Nuclear Institutional systems
  - b. Operations and operational constraints
- 8. Regulatory use in:

VFA

- a. Assessing its implementation in a design
- b. In delivering regulatory functions such as inspections
- 9. Conclusions and Recommendations



#### Way forward

NFA

- On-going drafting of the Green Booklet
- Main interest on policy issues
  - DiD concept and end safety goals
  - Balance between prevention and mitigation
  - Adequate attention to site aspects
  - Convergence on DiD implementation
  - Closer harmonisation of the application and implementation of DiD
- Ensure a consistent approach with others initiatives (IAEA, INSAG...)