SESSION 2: ADDRESSING CLIMATE CHANGE CHALLENGES

PANEL 2.1: Adaptation: Climate smart agriculture, water cycle and emergency preparedness

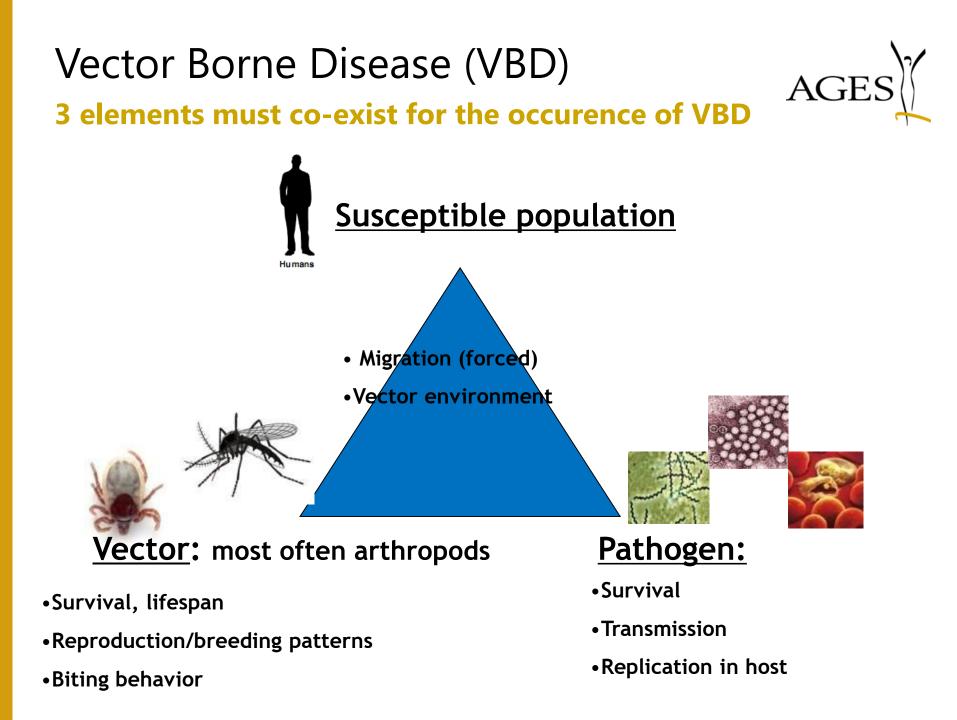
Friedrich Johann SCHMOLL Austria

Head, Division of Animal Health and Institute for Veterinary Disease Control, Austrian Agency for Health und Food Safety

Friedrich Johann Schmoll is the Head of the Division of Animal Health and Head of the Institute for Veterinary Disease Control at the Austrian Agency for Health und Food Safety (AGES) under the authority of which the biosafety level 3 laboratory (BSL3) has been built and is currently being operated in Mödling, Austria, hosting some of the IAEA activities

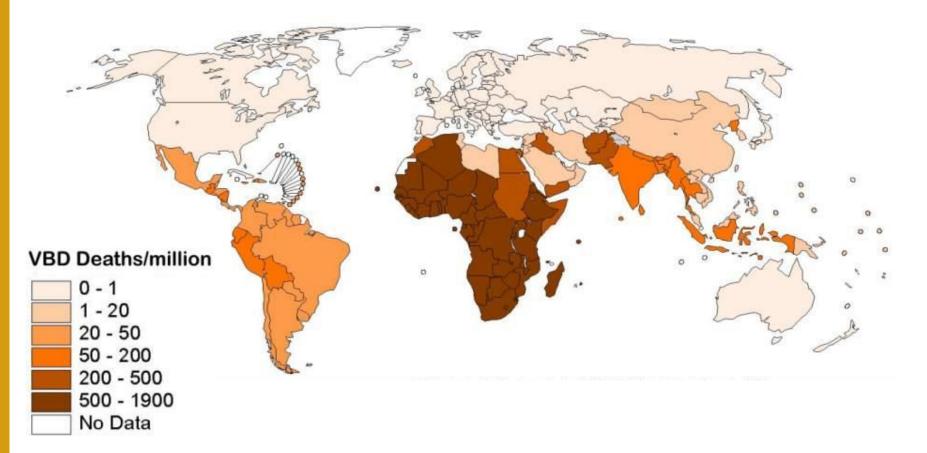
Influences of climate change on emerging and re-emerging animal and zoonotic diseases;

and the role of nuclear technology in this context

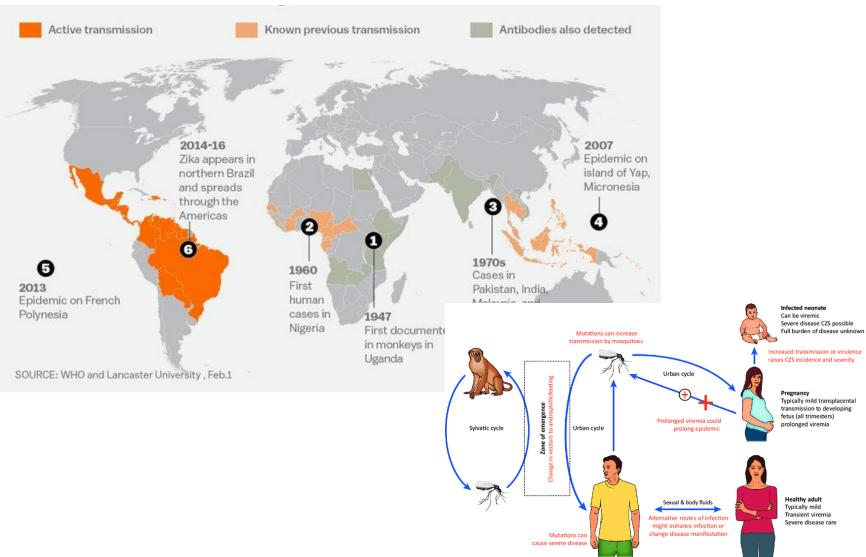

Prof. Dr. Friedrich Schmoll

Institute for Veterinary Disease Control Mödling

climate change animal and zoonotic diseases;



- Climate change provides more suitable environments for infectious diseases
- allowe disease-causing bacteria, viruses, and fungi to move into new areas where they may harm wild life and domestic species, as well as humans
- Pathogens can invade new areas and find new susceptible species as the climate warms and/or the winters get milder
- Insect-borne diseases are now present in temperate areas where the vector insects were non existent in the past e.g. trypanosomosis, anaplasmosis
- Humans are also at an increased risk from insect-born diseases such as malaria, dengue, and yellow fever


Vector Born Disease Mortality Distribution

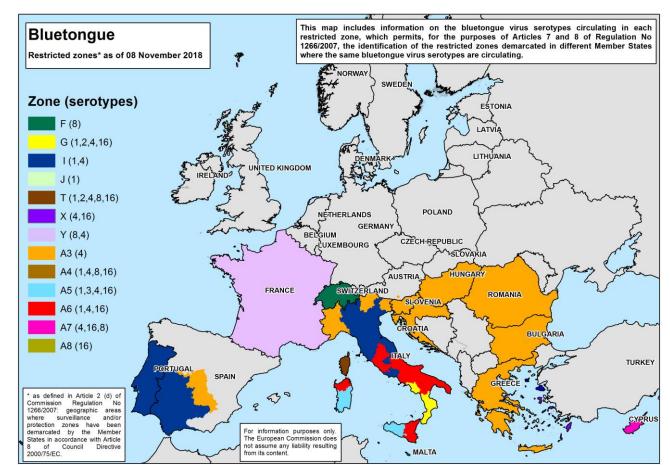
WHO, VBDs collectively account for more than 1.5 million human deaths per year (Hill et al., 2005).

Zika Virus Spread

AGES

Bluetongue (Ruminant)

biting midge: Culicoides imicola

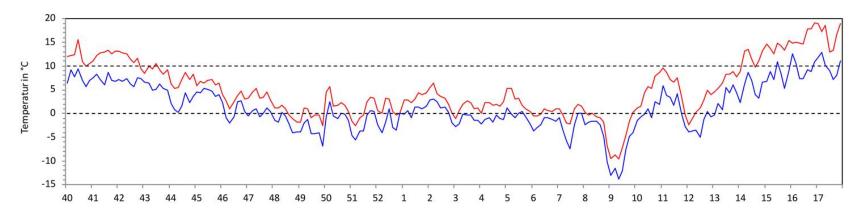


Culicoides biting midge

Source: DEFRA

1st description 1905 in South Africa

Bluetongue: Austrian vector monitoring for declaring seasonal vector-free period (Brugger et al., 2016


- Start of the seasonal vector-free period
 - as of the beginning of December, and/or
 - after 6 consecutive days with frost ($T_{min} < 0^{\circ}$ C)
- Ending of the seasonal vector-free period
 - Catches with one Culicoides imicola or more than 5 (parous) Culicoides obsoletus and/or
 - after 7 consecutive days with mean daily temperature
 > 10° C and so the beginning of the vector activity can be expected.

Vector monitoring 2017/18 Bluetongue: Austrian

												Vektorfreier Zeitraum 1.12.2017 bis 30.4.2018											
	Oktober				November					Dez.	Jän.	Feb.	März				April						
Standort	KW 40	KW 41	KW 42	KW 43	KW 44	KW 45	KW 46	KW 47	KW 48	KW 49	KW 2	KW 7	KW 10	KW 11	KW 12	KW 13	KW 14	KW15	KW16	KW 17			
Wien	5/28	21/11	7/6	9/6	0/0	0/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	2/0	36/2			
Innsbruck	2/0	3/5	5/2	0/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0			
Linz	0/0	1/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/0			
Mödling	10/8	23/19	2/3	0/0	0/5	0/4	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	7/1	65/5			
Kagelsberg	10/31	0/2	0/2	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	3/0	0/0	50/1			
Grafendorf	>50/>50	>50/>50	>50/>50	>50/>50	1/9	>10/>50	0/0	0/0	0/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/0	14/0	158/3	1/1			
Grünbach	0/0	1/0	0/2	0/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/0	5/0	102/24			
Hohenzell	0/0	11/8	0/3	0/2	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1/0	0/0	>50/>10			
St. Veit an der Glan	>50/>50	>50/>50	24/47	10/20	>20/>50	>20/>50	0/2	0/20	na/na	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	6/1	178/0	>50/>10			

Anzahl nullipare/pare Gnitzen na ... keine Probe

keine Gnitzen nullipare Gnitzen < 5 pare Gnitzen ≥ 5 pare Gnitzen

Tagesmitteltemperatur bzw. Temperaturminimum (gemittelt über die Stationen Wien, Graz, Innsbruck, Klagenfurt, Linz)

the role of nuclear technology in context emerging and re-emerging animal and zoonotic diseases?

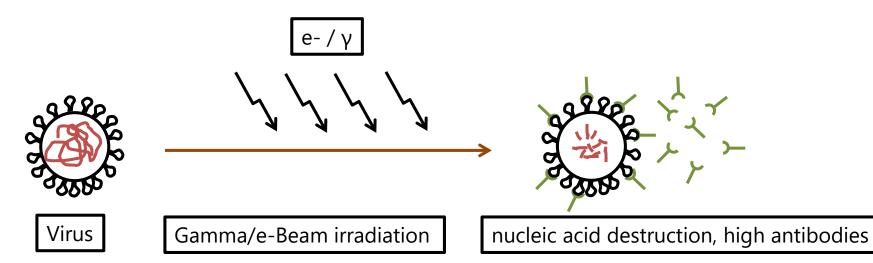
Cooperation: IAEA – AGES (AT) Our goals: health, food security, food safety

AGES Austrian Agency for Health & Food Safety

to contribute to sustainable food security and safety by use of nuclear techniques and biotechnology

Austria

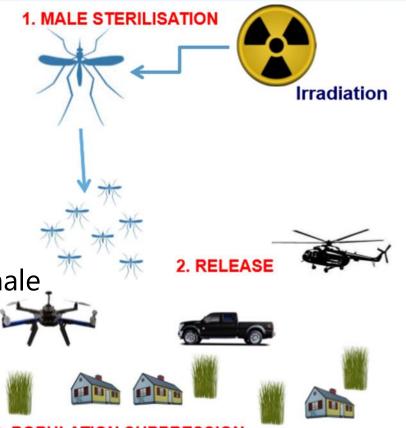
Center for Biosafety (L3+)


Cooperation: IAEA – AGES (AT)

Our goals: health, food security, food safety

rapid diagnostic techniques

- developing and validating early and rapid diagnostic techniques: ELISA, PCR, real time PCR and sequencing
- 1. African Swine Fever, Lumpy skin Disease, Avian Influenca, ...
- irradiation of pathogens for vaccine production


Sterile Insect Technique - Mosquitoes A

Insect pest controle

🦰 The SIT Package:

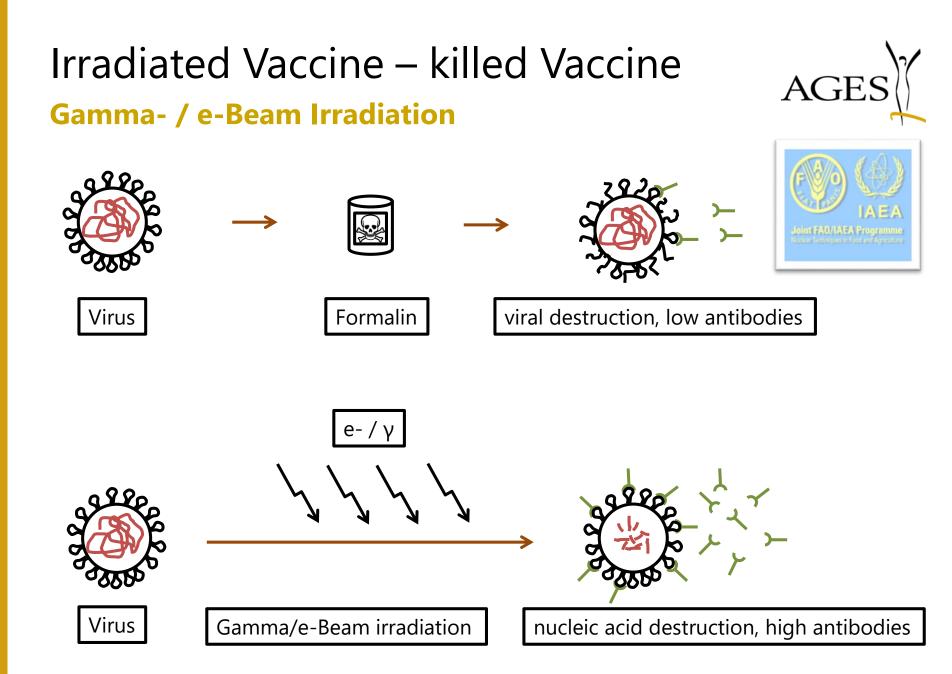
- Mass rearing
- Sex seperation, males
- Sterilisation by irradiation
- Packing, Transport
- Release
- Mating sterile male with wild female
 Matings result in no offspring

3. POPULATION SUPPRESSION

Successful Uses of SIT to Manage Insect Pests

Pink Bollworm in USA eradication

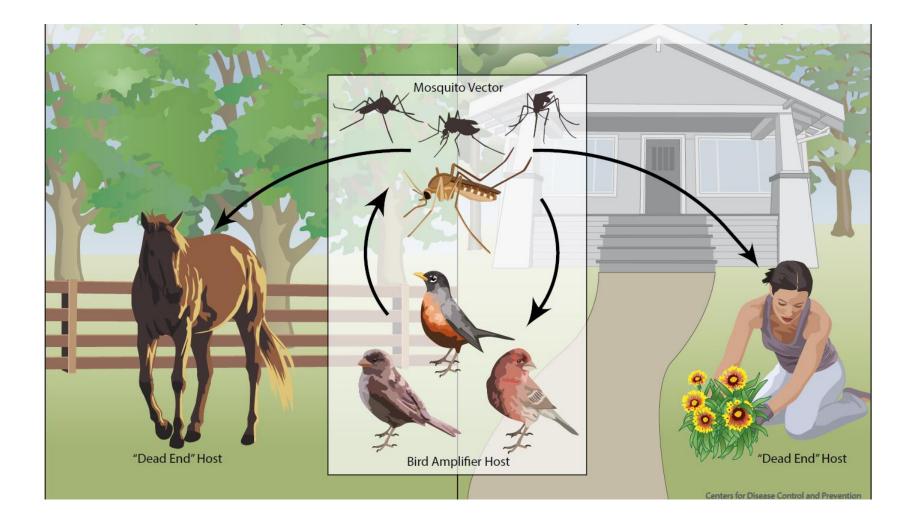
False Codling Moth in South Africa suppression


Mediterranean fruit fly in various countries Prevention, suppression, eradication **Univ.-Prof. Dr. Friedrich Schmoll** Geschäftsfeldleiter Tiergesundheit

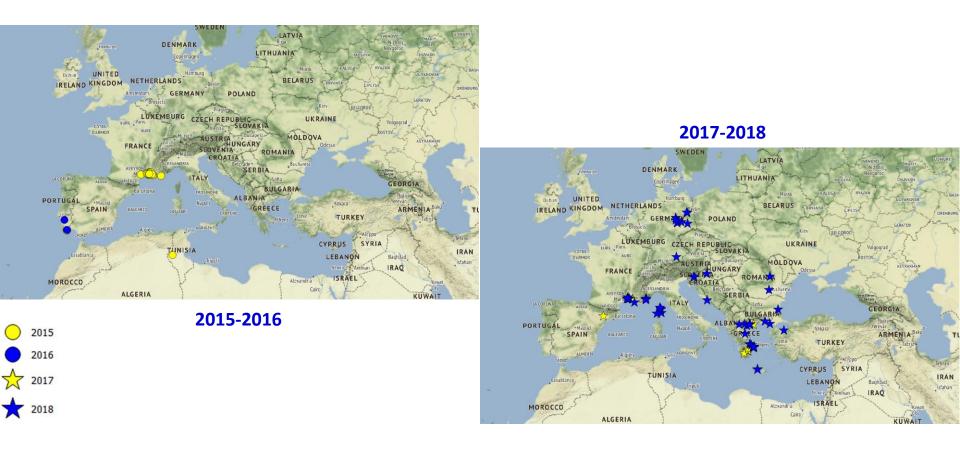
GE

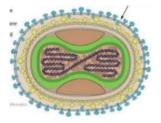
AGES – Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH

Robert-Koch-Gasse 17 A-2340 Mödling T +43 50555 38200 / M +43 664 9670940


friedrich.schmoll@ages.at www.ages.at

West Nile Virus


Transmission Cycle



West Nile Fever

Geographical shift between 2015 and 2018

Caused by a virus from the family Poxviridae, genus Capripoxvirus It is one of the biggest viruses

Lumpky Skin Disease

Transmission

- Direct contact
- Vector arthropods (mechanical
- Secretions / excretions

Skin and lung lesions (Credit: Noah's Arkive, PIADC)

Mosquitoes (Aedes aegypti)

Ticks, multiple species (Ixodes, Ripicephalus, Hyaloma, etc)


Mosquitoes (Culex)

Stable fly (Stomoxys calcitrans)

Lumpky skin disease distribution

January 2006 – September 2016

