SESSION 1: IMPROVING QUALITY of LIFE

PANEL 1.1B: Human health

Research Director, Basic Research Division, CEA

Sylvie Chevillard heads the Experimental Cancerology Laboratory and Department of Experimental Radiobiology and Innovative Technology at the French National Institute of Health and Medical Research

Sylvie CHEVILLARD
France
METALLIC NANOPARTICLES: PROMISING TOOLS TO ENHANCE EFFICACY AND DOSIMETRY IN RADIOTHERAPY

Sylvie Chevillard

BASIC RESEARCH DEPARTMENT
INSTITUT OF BIOLOGY FRANÇOIS JACOB
CANCEROLOGY EXPERIMENTAL UNIT
Radiotherapy a major treatment for cancer
- 50% of cancer patients received RX
- 20% of cancer are radiation-resistant

Radiotherapy road map improvements
- better target the tumor
- total dose split
- higher dose per session
- higher dose rate

Main challenges
- increase radiation efficacy, while preserving healthy tissues
- overcome resistance and/or tumor relapse?
- intratumoral radiation dosimetry rather than calculation of the delivered radiation dose
 - is the dose currently delivered to the tumor the expected one? …
 - prevent accident during the time course of radiotherapy
Metallic nanoparticles for radiotherapy enhancement and intratumoral radiation dosimetry

Transversal skills and technical innovations in astrophysics, biology and chemistry

Astrophysics

Detector X-ray

Chemistry Gold NPs

Dosimetry

Biology Cancer response

Nanoparticles synthesized LCP and finely characterized for each lot
Tailles et recouvrements à façon
Principle effects of radiotherapy on cancer cells

Direct effects

Indirect effects

H₂O → °OH + e⁻

ROS

Living cancer cells

Resistant tumor

Sensitive tumor

Dead cells

Dead cells and living resistant cells
Nanoparticles: enhancement of radiotherapy

Direct effects
- Fluorescent emission
- Campton scattering
- Auger electrons
- Pair production: positron & electron
- Electromagnetic scattering

Indirect effects
- ROS
- Additive indirect effects
- RO5

Living cancer cells
- Sensitive and Resistant tumor
- Dead cells
Nanoparticles enhancement of radiotherapy

DarkField microscopy

Nanoparticles internalisation

Cancer cells

Number of cells

Mortality (%)

irradiation

Irradiation + AuNP

MDAMB231 0µg/mL

MDAMB231 50µg/mL
Nanoparticles: intratumoral radiation dosimetry

Photon detector

Strictly proportional to the dose

Fluorescent emission

Electromagnetic scattering

Campton scattering

Auger electrons

Pair production positron & electron

High z metal

Photon detector

Nanoparticles: intratumoral radiation dosimetry

Fluorescent emission

Campton scattering

Auger electrons

Pair production positron & electron

Electromagnetic scattering

Photon detector

Nanoparticles: intratumoral radiation dosimetry

Fluorescent emission

Campton scattering

Auger electrons

Pair production positron & electron

Electromagnetic scattering

Photon detector
Fluorescence detection of irradiated nanoparticles intratumoral radiotherapy dosimetry

Sensitivity: 50 µg

In vivo: 1 à 10 mg/kg (intra-tumoral)
- 20g mouse => 20-200 µg d’or
- 60 kg women => 60-600 mg d’or
Conclusions

Main results

- Improve efficacy of radiotherapy by killing resistant cancer cells — **Better cure**
- Real time measurement of radiation dose delivered into the tumor — **Better cure and increased safety**

First attempts of XRF tomographic reconstruction for adjustment of NP exposure

Combine transversal skills ans knowledge
Disruptive technologies are only possible through multidisciplinary approaches

Still a lot of work to get to the patient, but all proofs of concept are there
Thank you for your attention

CEA DRF/IRFU Astrophysics
Olivier Limousin, Diana Renaud, Daniel Maier, François Visticot,
Pierre-Anne Bausson, Jérôme Martignac

CEA DRF/iRCM biology and cancer cells
Sylvie Chevillard, Romain Grall, Jérôme Lebeau, Jozo Delic,

CEA DRT/LIST Robotics & tomography
Hermine Lemaire, Caroline Vienne, Adrien Stolidi

University Paris Sud / LCP Chemistry
Cécile Sicard, Emilie Brun, Stéphanie Droniou