

Institute of Environmental Science and Technology

Planktonic calcifiers and ocean acidification

Patrizia Ziveri

Catalan Institution for Research and Advanced Studies (ICREA), Universitat Autònoma de Barcelona (UAB), Institute of Environmental Science and Technology (ICTA), Bellaterra, Barcelona, Spain

Why planktonic calcifiers?

- 1. Major global calcium carbonate producers
- 2. At the base of the food web
- 3. Coccolithophores, foraminifera and pteropods largely driving pelagic carbonate production
- 4. different forms of CaCO₃ such as aragonite or low Mg calcite
- 5. Shell mass and morphology can relate to carbonate export, morphogenesis,

OA and calcification

High CO_2 ocean \rightarrow OA \rightarrow a general reduction of marine calcification (physiology) and carbonate production (carbon cycle)

it is still unknown how large such a potential reduction in calcification will be in the future and what will be the effects on the marine community dynamics and marine biogeochemistry.

4

..but how to we measure calcification?

How to measure calcification (amount of $CaCO_3$ or particulate inorganic carbon PIC)

 $2HCO^{-3}+Ca^{2+}\rightarrow CO_2+CaCO_3+H_2O$

Summary of techniques

- Geological approach
- Sedimentological approach
- Alkalinity Anomaly Technique
- Radioisotopes (⁴⁵Ca, ¹⁴C, ³H-tetracycline)
- Changes in particulate calcium content
- Change in calcium concentration
- pH-O₂
- X-ray analysis
- Buoyant weight
- "Biological" approach
- Changes in Particulate Inorganic Carbon content
- Molecular tools

Environmental controls on the Emiliania huxleyi calcite mass								
20°W 10°W	0° 10°E	E 20°E 3	80°E 40°E	Clus	ter analysis	s provide	d 3 cluste	ers:
EQ 10'S South South Current Current				(b) #1: The Aghullas Current, between the See South Atlantig gyre and the Subtropical front, north to the South Atlantic gyre				
30°S	Aguit	has ent ge	the design of the second	220 #2: icocc circl	Гhe South А es)	Atlantic g	yre (grey	open
40°S Subantarctic Front 50°S Polar Front				 4 #3: Below the Subtropical front 4 High Relation between the mass of <i>E. huxleyi</i> 2 and the environmental parameters within the 3 clusters (black circles). 				
1	Femperature	Salinity	Chl a	Nitrate	Phosphate	pH	pCO_2	[CO ₃ ²⁻]
Cluster #1	-0.537	-0.225	-0.155	-0.116	0.022	0.621	-0.605	0.018
Cluster #2	0.252	0.197	-0.652	-0.660	-0.704	0.383	-0.391	0.371
Cluster #3	0.609	0.562	0.557	-0.632	-0.620	-0.163	0.090	0.554
Entire data set	-0.305	-0.359	0.406	0.088	0.134	0.356	-0.372	-0.268
1								

Access

To read this story in full you will need to login or make a payment sediments. We find that nature.com > Journal home > Table of Contents modorn sholl weights are

Letter

Nature Geoscience 2, 276 - 280 (2009) Published online: 8 March 2009 | doi:10.1038/ngeo460

Subject Categories: Biogeochemistry | Oceanography

Reduced calcification in modern Southern Ocean planktonic foraminifera

Andrew D. Moy $\frac{1}{2}$, William R. Howard $\frac{1}{2}$, Stephen G. Bray $\frac{1}{2}$ & Thomas W. Trull $\frac{1}{2}$, $\frac{3}{2}$

.......

Globigerina bulloides collected from sediment traps in the Southern Ocean with the weights of shells preserved in the underlying Holocene-aged modern shell weights are 30-35% lower than those from the sediments, consistent with reduced calcification today induced by ocean acidification. We also find a link between higher atmospheric carbon dioxide and low shell weights in a 50,000-year-long record obtained from a Southern Ocean marine sediment core

- Key component of the marine carbon cycle
- Base of the food web
- OA → general reduced calcification → Species specific response
- Pteropods as Ocean's Canary in the Coal Mine (?)

Calcification References

Coccos 14C

Balch WM, Holligan PM, Kilpatrick KA. 1992 Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Cont. Shelf Res. 12, 1353–1374

Coccos bulk

Langer, G., Oetjen, K., and Brenneis, T. (2013) coccolithophores do not increase particulate carbon production under nutrient limitation: A case study using Emiliania huxleyi (PML B92/11), J. Exp. Mar.Biol. Ecol., 443, 155–161

Corals weight

1. B. Kuffner, T. D. Hickey, J. M. Morrison (2013) Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs Volume 32, Issue 4, pp 987-997

Corals TA and 45Ca

E. Tambutté, D. Allemand, I. Bourge, J. -P. Gattuso, J. Jaubert (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Marine Biology Volume 122, Issue 3, pp 453-459

Forams weight

N. Keul, G. Langer, L. J. de Nooijer, and J. Bijma (2013) Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences, 10, 6185-6198

Forams 45Ca

Anderson, O. R. and Faber, W. W. (1984) An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45 a as a tracer; a recommended procedure for improved accuracy, J. Foramin. Res., 14, 303–308

Inorganic Lorens, RB (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta Volume 45, Issue 4, Pages 553-561

Nehrke et al (2007) Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth. Geochimica et Cosmochimica Acta Volume 71, Issue 9, Pages 2240-2249