Things you should know about ocean acidification
Ocean absorbs one-fourth of man-made CO₂ emissions

Half of emitted CO₂ remains in atmosphere (causing global warming)

Half absorbed by ocean & land (trees, plants, and soils)

Ocean absorbs 24 million tons of CO₂ every day (4 kg per person, daily)

Le Quéré et al 2013; CDIAC data; Global Carbon Project 2013
#2- More atmospheric CO₂ means increased ocean acidity

CO₂ is an acid gas (it produces acid when combined with water)

Each of us adds 4 kg CO₂ per day to the ocean (increasing acidity, reducing pH)

Ocean acidity up by 30% since start of industrial age

Most of that only in last 40 years
#3- Change in pH from ocean acidification already measurable

Data:
Bates (2007)
Dore et al. (2009)
Santana-Casiano et al. (2007)
Gonzàles-Dàvila et al. (2010)

IPCC AR5 WG1 Report, Chap. 3 (2013)
#4 Today’s rate of ocean acidification may be unprecedented

- overwhelms natural variations (last 800,000 years)
- may be 10 times faster than natural event (55 million years ago)
- rate may be unprecedented (over last 300 million years)
- 30% increase in acidity (H\(^+\)) during industrial era
- 100% increase (or more) projected by 2100

Current change:

Barker and Ridgwell (2012)
#5- Polar oceans become corrosive to shell material within decades

Models project that cold waters soon become corrosive to aragonite, a (CaCO$_3$) mineral in some marine shells & skeletons.

Corrosivity of waters to aragonite (when < 1, aragonite dissolves)

Latest model projections (IPCC AR5 WG1, 2013)

Confirms original warnings: Orr et al. (2005), Caldeira & Wickett (2005), Steinacher et al. (2009)

see also Bopp et al. (2013)
#6 These corrosive conditions dissolve shells of sea butterflies

Sea butterfly shells (CaCO$_3$) exposed to corrosive conditions expected by 2100

Orr et al. (2005)
Fabry et al. (2008)
Comeau et al. (2009; 2011; 2012)
Lischka et al. (2011); Lischka & Riebesell (2012)
Bednarsek et al. (2012)

Movie: Brad Seibel, University of Rhode Island

Image: Victoria Fabry, California State University San Marcos
#7- Acidification will change marine ecosystems

Organisms react differently

Corals and shell builders decline

Seagrasses may increase

Fish become disoriented

Prey loss affects predators

Potential fish catch decline

Synthesis of existing experimental studies

Wittmann & Pörtner (2013)

see also Kroeker et al. (2013)
#8 Ocean areas naturally rich in CO\textsubscript{2} confirm expected future trends

- Less biodiversity
- Fewer calcifiers
- More fragile shells
- More invasive species
- More seagrasses, degraded corals

CO\textsubscript{2} bubbles rise from seafloor at Ischia, Bay of Naples, a natural lab to study acidification

Hall-Spencer et al. (2008)
Rodolfo-Metalpa et al. (2008)

Photo: Steve Ringman, Seattle Times

Another natural CO\textsubscript{2} vent site in Papua, New Guinea, used to study effects of acidification on corals

Photo: Jason Hall-Spencer, University of Plymouth
#9- Ocean acidification will also affect humans

- Fish is primary source of animal protein for 1 billion people, mostly in developing countries (FAO)

- Coral reefs provide
 - home for millions of species
 - storm protection for coastlines
 - income from tourism
 - biodiversity legacy for future

- Ocean acidification already affecting oyster industry (U.S. west coast)

- Ocean acidification may generally affect aquaculture, fisheries, and human livelihoods
The intensity of ocean acidification depends on us

Future atmospheric CO₂ (latest IPCC scenarios)

Intesity of ocean acidification (change in pH) varies by a factor of 3

IPCC AR5 WG1, Technical Summary (2013)

see also Bopp et al. (2013)
For more information and resources on ocean acidification:

iaea.org/ocean-acidification