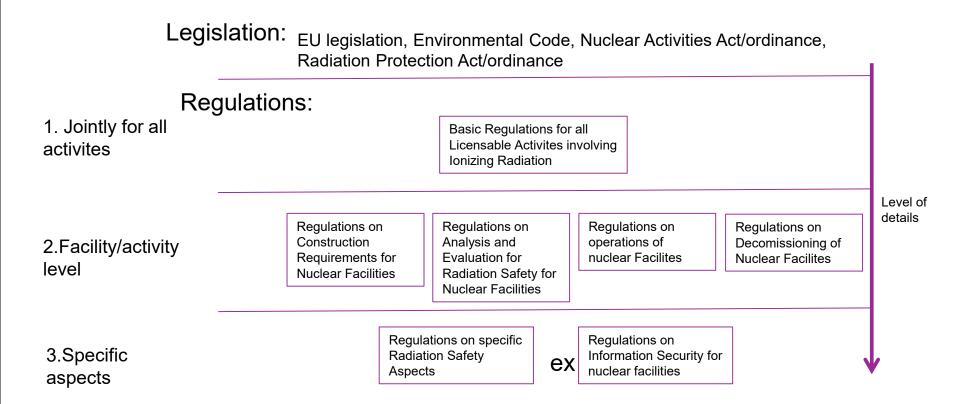


Security – Safety Interface in Practice

Lessons learned from the Swedish joint regulatory project

Jonas Sjöström, CPP B.Sc. Security

1	ikikarhetunyadighetena 🕴 📩	
	Strähikerhetunyndighetens Strähingssamling	a Statistics advertises screeninger



Swedish Radiation Safety Authority

The new regulatory approach

- Ch.1 Application and Definitions
- Ch.2 Generic Requirements
 - Risk profile
 - Defence in depth and barriers
 - Organization, Command & Control

Ch.3 Requirements on facility and functional level

- Fundamental radiation safety functions
- Radiation safety classification
- Emergency preparedness
- Waste and decommissioning
- Multiple facilities on the same location

Structure of Regulations (Construction of NPPs cont)

- Ch 4 Requirements on specific construction solutions
 - Reactivity control
 - Heat removal
 - Reactor containment and shielding of sources
 - Fuel and core
 - Preassure and load bearing SSC
 - Power supply
 - Control room

Physical protection

- Fire protection
- Spent fuel pool
- Ventilation

Examples of S&S interface

- Evaluation and analysis of all initiating events that might pose a threat to the safety of the reactor
 - Internal events
 - Internal hazards
 - External hazards
 - Malicious acts

- Identify anticipated events and conditions
- Categorise and divide into event classes (plant states)
- Analyse and assess development over a certain period of time
- Analyse and assess the resulting radiation protection impacts against design criteria, in terms of doses to workers and general public and releases to the environment

S&S interface

Design basis threat levels	Plant state/Event class (H1-H5)	Construction Criteria, mSv (existing reactors)
-	H1	
DBT1	H2	1
DBT2	H3	10
DBT3	H4A	100
DBT4	H4B	100
DBT5	H5	100TBq Cs137

Example of a provision

"§53 A nuclear power reactor should be constructed with a physical protection system that enables the continuous operations of the fundamental safety functions during security events from H2-H5.

The physical protection system should be constructed with:

- A limited access area
- Protected areas within the limited access area, and
- Vital areas.."

Implications for security

- Language
 - Swedish got one word for safety and security
 - Use of terms DiD, Barrier etc
 - "Safetyfication" of security terminology
- Integration in a shared publication
 - No stand-alone security publication -Lack of visibility?
- Internal cooperation
 - allocation of resources and priorities
- Competence
 - New way of regulating and inspecting

Conclusion

- Holistic approach to the overall safety of the reactor
- All regulatory requirements together based on characteristics as opposed to subject matter
- Security/safety interaction and interdependability enhanced through the joint approach
- Focus on what we have in common as opposed to our differencies
- Acknowledge and respect the differencies!

Thank you!

jonas.sjostrom@ssm.se