1. Skip to navigation
  2. Skip to content
  3. Skip to secondary content
  4. Skip to sidebar

Navigation





Nithiyaa Nilamani (Malaysia), 4th International Symposium on the Ocean in a High-CO2 World, 3-6 may 2016, Hobart, Australia

"My sincere thanks to the OA-ICC for making it possible for me to present my research at the 4th International Symposium on the Ocean in a High-CO2 World. During the symposium, there were exchange of many experiences, suggestions and opinions with experts that would be very beneficial for the advancement of OA study to the newbie countries like Malaysia. It also gave me an opportunity to make new friends, renew old acquaintances and discuss potential collaboration.”


Abed El Rahman HASSOUN (Lebanon), 3rd GOA-ON Science Workshop, 8-10 May 2016, Hobart, Australia

"OA-ICC [...] provided for me the opportunity to present my research work to the international ocean research community, to meet experts and colleagues from all over the world and discuss with them about my results, share ideas and build a strong network with peers for future scientific collaborations."

Data that could not be obtained from the authors


Some papers describe data sets which are relevant but could not be added to the OA-ICC compilation.

2017

  • Duckworth C. G., Picariello C. R., Thomason R. K., Patel K. S. & Bielmyer-Fraser G. K., 2017. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure. Aquatic Toxicology 182:120–128.
  • Keul N., Langer G., Thoms S., Jan de Nooijer L., Reichart G.-J. & Bijma J., 2017. Exploring foraminiferal Sr/Ca as a new carbonate system proxy. Geochimica et Cosmochimica Acta 202:374–386.
  • Nasuchon N., Hirasaka K., Yamaguchi K., Okada J. & Ishimatsu A., 2017. Effects of elevated carbon dioxide on contraction force and proteome composition of sea urchin tube feet. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 21:10–16.
  • Peach K. E., Koch M. S., Blackwelder P. L. & Manfrino C., 2017. Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs. Journal of Experimental Marine Biology and Ecology 486:114–126.
  • Pistevos J. C. A., Nagelkerken I., Rossi, T. & Connell S. D., 2017. Ocean acidification alters temperature and salinity preferences in larval fish. Oecologia 183:545.
  • Porzio L., Buia M. C., Lorenti M., De Maio A. & Arena C., 2017. Physiological responses of a population of Sargassum vulgare (Phaeophyceae) to high pCO2/low pH: implications for its long-term distribution. Science of The Total Environment 576:917–925.
  • Raddatz S., Guy-Haim T., Rilov G. & Wahl M., 2017. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). Journal of Phycology 53(1):44–58.
  • van Dijk I., de Nooijer L. J., Wolthers M. & Reichart G.-J., 2017. Impacts of pH and [CO32-] on the incorporation of Zn in foraminiferal calcite. Geochimica et Cosmochimica Acta 197:263–277.

2016

  • Albright R., Caldeira L., Hosfelt J., Kwiatkowski L., Maclaren J. K., Mason B. M., Nebuchina N., Ninokawa A., Pongratz A., Ricke K. L., Rivlin T., Schneider K., Sesboüé M., Schamberger K., Silverman J., Wolfe K., Zhu K. & Caldeira K., 2016. Reversal of ocean acidification enhances net coral reef calcification. Nature 531(7594):362-365.
  • Al-Janabi B., Kruse I., Graiff A., Karsten U. & Wahl M., 2016. Genotypic variation influences tolerance to warming and acidification of early life-stage Fucus vesiculosus L. (Phaeophyceae) in a seasonally fluctuating environment. Marine Biology 163(1):1-15.
  • Bach L. T., Taucher J., Boxhammer T., Ludwig A., The Kristineberg KOSMOS Consortium, Achterberg E. P., Algueró-Muñiz M., Anderson L. G., Bellworthy J., Büdenbender J., Czerny J., Ericson Y., Esposito M., Fischer M., Haunost M., Hellemann D., Horn H. G., Hornick T., Meyer J., Sswat M., Zark M. & Riebesell U., 2016. Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations. PLoS ONE 11(8):e0159068.
  • Bahr K. D., Jokiel P. L. & Rodgers K. S., 2016. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs 35(2):729-738.
  • Baragi L. V. & Anil A. C., 2016. Synergistic effect of elevated temperature, pCO2 and nutrients on marine biofilm. Marine Pollution Bulletin 105(1):102–109.
  • Bedwell-Ivers H. E., Koch M. S., Peach K. E., Joles L., Dutra E. & Manfrino C., 2016. The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricate. ICES Journal of Marine Science.
  • Benítez S., Duarte C., López J., Manríquez P. H., Navarro J. M., Bonta C. C., Torres R. & Quijón P. A., 2016. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification. Marine Pollution Bulletin 112(1-2):375–379.
  • Bennett H. M., Altenrath C., Woods L., Davy S. K., Webster N. S. & Bell J. J.,2016. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Global Change Biology 23(5):2031–2046.
  • Bermudez J.R., Riebesell U., Larsen A. & Winder M., 2016. Ocean acidification reduces transfer of essential biomolecules in a natural plankton community. Scientific Reports 6:27749.
  • Brown D. & Edmunds P. J., 2016. Differences in the responses of three scleractinians and the hydrocoral Millepora platyphylla to ocean acidification. Marine Biology 163:62.
  • Campbell A. L., Levitan D. R., Hosken D. J. & Lewis C., 2016. Ocean acidification changes the male fitness landscape. Scientific Reports 6:31250.
  • Campbell J. E., Fisch J., Langdon C. & Paul V. J., 2016. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35(1):357–368.
  • Chen B., Zou D., Zhu M. & Yang Y., 2016. Effects of CO2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis. Aquaculture Research 48(6):2683–2690.
  • Clark H. R. & Gobler C. J., 2016. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Marine Ecology Progress Series 558:1-14.
  • Cooper H. L., Potts D. C. & Paytan A., 2016. Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species, Euphausia pacifica. ICES Journal of Marine Science.
  • Crook E. D., Kroeker K. J., Potts D. C., Rebolledo-Vieyra M., Hernandez-Terrones L. M. & Paytan A., 2016. Recruitment and succession in a tropical benthic community in response to in-situ ocean acidification. PLoS ONE 11(1):e0146707
  • Cross E. L., Peck L. S., Lamare M. D. & Harper E. M., 2016. No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES Journal of Marine Science 73(3):920-926.
  • Cunningham S. C., Smith A. M. & Lamare M. D., 2016. The effects of elevated pCO2 on growth, shell production and metabolism of cultured juvenile abalone, Haliotis iris. Aquaculture Research 47:2375–2392.
  • Davis B. E., Miller N. A., Flynn E. E. & Todgham A. E., 2016. Juvenile Antarctic rockcod, Trematomus bernacchii, are physiologically robust to CO2–acidified seawater. Journal of Experimental Biology 219:1203-1213.
  • Dutra E., Koch M., Peach K. & Manfrino C., 2016. Tropical crustose coralline algal individual and community responses to elevated pCO2 under high and low irradiance. ICES Journal of Marine Science 73 (3):803-813.
  • Edmunds P. J. & Yarid A., 2016. The effects of ocean acidification on wound repair in the coral Porites spp.. Journal of Experimental Marine Biology and Ecology 486:98–104.
  • Eriander L., Wrange A.-L. & Havenhand J. N., 2016. Simulated diurnal pH fluctuations radically increase variance in—but not the mean of—growth in the barnacle Balanus improvises. ICES Journal of Marine Science 73(3):596-603.
  • Fine M., Tsadok R., Meron D., Cohen S. & Milazzo M., 2016. Environmental sensitivity of Neogoniolithon brassica-florida associated with vermetid reefs in the Mediterranean Sea. ICES Journal of Marine Science.
  • Foster T., Falter J. L., McCulloch M. T. & Clode P. L. 2016. Ocean acidification causes structural deformities in juvenile coral skeletons. Science Advances 2(2):e1501130.
  • Frieder C. A., Applebaum S. L., Francis Pan T.-C., Hedgecock D. & Manahan D. T., 2016. Metabolic cost of calcification in bivalve larvae under experimental ocean acidification. ICES Journal of Marine Science.
  • Frommel A. Y., Margulies D., Wexler J. B., Stein M. S., Scholey V. P., Williamson J. E., Bromhead D., Nicole S. & Havenhand J., 2016. Ocean acidification has lethal and sub-lethal effects on larval development of yellowfin tuna, Thunnus albacares. Journal of Experimental Marine Biology and Ecology 482:18–24.
  • Gao G., Clare A. S., Rose C. & Caldwell G. S., 2016. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Marine Pollution Bulletin 114(1):439–447.
  • Garzke J., Hansen T., Ismar S. M. H. & Sommer U., 2016. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11(5):e0155952.
  • Ghedini G. & Connell S. D.,2016. Organismal homeostasis buffers the effects of abiotic change on community dynamics. Ecology 97(10):2671–2679.
  • Glandon H. L. & Miller T. J., 2016. No effect of high pCO2 on juvenile blue crab, Callinectes sapidus, growth and consumption despite positive responses to concurrent warming. ICES Journal of Marine Science.
  • Graham E. R. & Sanders R. W., in press. Species-specific photosynthetic responses of symbiotic zoanthids to thermal stress and ocean acidification. Marine Ecology 37(2):442–458.
  • Graham H., Rastrick S. P. S., Findlay H. S., Bentley M. G., Widdicombe S., Clare A. S. & Caldwell G. S., 2016. Sperm motility and fertilisation success in an acidified and hypoxic environment. ICES Journal of Marine Science 73 (3):783-790.
  • Hama T., Inoue T., Suzuki R., Kashiwazaki H., Wada S., Sasano D., Kosugi N. & Ishii M., 2016. Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions. Journal of Oceanography 72(2):207-223.
  • Heldt K. A., Connell S. D., Anderson K., Russell B. D. & Munguia P., 2016. Future climate stimulates population out-breaks by relaxing constraints on reproduction. Scientific Reports 6:33383.
  • Heuer R. M. & Grosell M., 2016. Elevated CO2 increases energetic cost and ion movement in the marine fish intestine. Scientific Reports 6:34480.
  • Heuer R. M., Welch M. J., Rummer J. L., Munday P. M. & Grosell M., 2016. Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Scientific Reports 6:33216.
  • Hoadley K. D., Pettay D. T., Dodge D. & Warner M. E., 2016. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts. Coral Reefs 35(2):529-542.
  • Hoadley K. D., Pettay D. T., Grottoli A. G., Cai W.-J., Melman T. F., Levas S., Schoepf V., Ding Q., Yuan X., Wang Y., Matsui Y., Baumann J. H. & Warner M. E., 2016. High-temperature acclimation strategies within the thermally tolerant endosymbiont Symbiodinium trenchii and its coral host, Turbinaria reniformis, differ with changing pCO2 and nutrients. Marine Biology 163:134.
  • Hu M. Y., Michael K., Kreiss C. M., Stumpp M., Dupont S., Tseng Y. & Lucassen M., 2016. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua. Frontiers in Physiology 7:198.
  • Hurst T. P., Laurel B. J., Mathis J. T. & Tobosa L. R., in press. Effects of elevated CO2 levels on eggs and larvae of a North Pacific flatfish. ICES Journal of Marine Science 73(3):981-990.
  • Indra Januar H., Putra Zamani N., Soedarma D. & Chasanah E., 2016. Changes in soft coral Sarcophyton sp. abundance and cytotoxicity at volcanic CO2 seeps in Indonesia. AIMS Environmental Science 3(2):239-248.
  • Iwasaki S., M. Inoue A., Suzuki O., Sasaki H., Kano A., Iguchi A., Sakai K. & Kawahata H., 2016. The role of symbiotic algae in the formation of the coral polyp skeleton: 3-D morphological study based on X-ray microcomputed tomography. Geochemistry, Geophysics, Geosystems 17:3629–3637.
  • Jansson A., Lischka S., Boxhammer T., Schulz K. G. & Norkko J., 2016. Survival and settling of larval Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels. Biogeosciences 13:3377-3385.
  • Johnson M. S., Kraver D. W., Renshaw G. M. C. & Rummer J. L., 2016. Will ocean acidification affect the early ontogeny of a tropical oviparous elasmobranch (Hemiscyllium ocellatum)? Conservation Physiology 4(1):cow003.
  • Kamya P. Z., Byrne M., Graba-Landry A. & Dworjanyn S. A., 2016. Near-future ocean acidification enhances the feeding rate and development of the herbivorous juveniles of the crown-of-thorns starfish, Acanthaster planci. Coral Reefs 35:1241.
  • Kang E. J. & Kim K. Y., 2016. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 31(1):49-59.
  • Kelly M. W., Padilla-Gamiño J. L. & Hofmann G. E., 2016. High pCO2 affects body size, but not gene expression in larvae of the California mussel (Mytilus californianus). ICES Journal of Marine Science 73(3):962-969.
  • Kim J.-H., Kang E. J., Edwards M. S., Lee K., Jeong H. J. & Kim K. Y., 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31(3):243-256.
  • Kim T. W. & Barry J. P., 2016. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification. Ocean Science Journal 51:381.
  • Kram S. L., Price N. N., Donham E. M., Johnson M. D., Kelly E. L. A., Hamilton S. L. & Smith J. E., 2016. Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES Journal of Marine Science 73(3):693-703.
  • Lee J.-A. & Kim T. W., in press. Effects of potential future CO2 levels in seawater on emerging behaviour and respiration of Manila clams, Venerupis philippinarum. ICES Journal of Marine Science.
  • Lesser M. P., in press. Climate change stressors cause metabolic depression in the blue mussel, Mytilus edulis, from the Gulf of Maine. Limnology and Oceanography.
  • Lewis C., Ellis R. P., Vernon E., Elliot K., Newbatt S. & Wilson R. W., 2016. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses. Scientific Reports 6:21554.
  • Li C., Meng Y., He C., Chan V. B. S., Yao H. & Thiyagarajan V., 2016. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification. Biofouling: The Journal of Bioadhesion and Biofilm Research 32(2):191-204.
  • Li S., Huang J., Liu C., Liu Y., Zheng G., Xie L. & Zhang R., 2016. Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environmental Science & Technology 50(3):1157–1165.
  • Li S., Liu C., Huang J., Liu Y., Zhang S., Zheng G., Xie L. & Zhang R., 2016. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Scientific Reports 6:18943.
  • Long W. C., Swiney K. M. & Foy R. J., 2016. Effects of high pCO2 on Tanner crab reproduction and early life history, Part II: carryover effects on larvae from oogenesis and embryogenesis are stronger than direct effects. ICES Journal of Marine Science 73(3):836-848.
  • Macleod C. D. & Poulin R., 2016. Parasitic infection alters the physiological response of a marine gastropod to ocean acidification. Parasitology 143(11):1397-1408.
  • Mardones J. I., Müller M. N. & Hallegraeff G. M., 2016. Toxic dinoflagellate blooms of Alexandrium catenella in Chilean fjords: a resilient winner from climate change. ICES Journal of Marine Science.
  • McLaskey A. K., Keister J. E., McElhany P., Brady Olson M., Shallin Busch D., Maher M., Winans A. K., 2016. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Marine Ecology Progress Series 555:65-78.
  • Mélançon J., Levasseur M., Lizotte M., Scarratt M., Tremblay J.-É., Tortell P., Yang G.-P., Shi G.-Y., Gao H., Semeniuk D., Robert M., Arychuk M., Johnson K., Sutherland N., Davelaar M., Nemcek N., Peña, A. & Richardson W., 2016. Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters. Biogeosciences 13:1677-1692.
  • Meunier C., Alguera-MuÃiz M., Horn H., Lange J. & Boersma M., 2016. Direct and indirect impact of near-future pCO2 levels on zooplankton dynamics. Marine & Freshwater Research 68(2):373-380.
  • Milano S., Schöne B. R., Wang S. & Müller W. E., 2016. Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule. Marine Environmental Research 119:144–155.
  • Miller S. H., Breitburg D. L., Burrell R. B. & Keppel A. G., 2016. Acidification increases sensitivity to hypoxia in important forage fishes. Marine Ecology Progress Series 549:1-8.
  • Munari M., Chemello G., Finos L., Ingrosso G., Giani M. & Marin M. G., 2016. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum. Chemosphere 160:293–302.
  • Nagelkerken I., Russell B. D., Gillanders B. M. & Connell S. D., in press. Ocean acidification alters fish populations indirectly through habitat modification. Nature Climate Change 6(1):89-93.
  • Nasuchon N., Yagi M., Kawabata Y., Gao K. & Ishimatsu A., 2016. Escape responses of the Japanese anchovy Engraulis japonicas under elevated temperature and CO2 conditions. Fisheries Science 1-10.
  • Navarro J. M., Duarte C., Manríquez P. H., Lardies M. A., Torres R., Acuña K., Vargas C. A. & Lagos N. A., 2016. Ocean warming and elevated carbon dioxide: multiple stressor impacts on juvenile mussels from southern Chile. ICES Journal of Marine Science 1108(1):51–63.
  • Navarro M. O., Kwan G. T., Batalov O., Choi C. Y., Pierce N. T. & Levin L. A., 2016. Development of embryonic market squid, Doryteuthis opalescens, under chronic exposure to low environmental pH and [O2]. PLoS ONE 11(12):e0167461.
  • Noonan S. H. C. & Fabricius K. E., 2016. Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals. ICES Journal of Marine Science 73(3):715-726.
  • Ober G. T., Diaz-Pulido G. & Thornber C., 2016. Ocean acidification influences the biomass and diversity of reef-associated turf algal communities. Marine Biology 163:204.
  • Ow Y. X., Uthicke S. & Collier C. J., 2016. Light levels affect carbon utilisation in tropical seagrass under ocean acidification. PLoS ONE 11(3):e0150352.
  • Ow Y. X., Vogel N., Collier C. J., Holtum J. A. M., Flores F. & Uthicke S., 2016. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species. Scientific Reports 6:23093.
  • Peach K. E., Koch M. S. & Blackwelder P. L., 2016. Effects of elevated pCO2 and irradiance on growth, photosynthesis and calcification in Halimeda discoidea. Marine Ecology Progress Series 544:143-158.
  • Pimentel M. S., Faleiro F., Marques T., Bispo R., Dionísio G., Faria A. M., Machado J., Peck M. A., Pörtner H., Pousão-Ferreira P., Gonçalves E. J. & Rosa R., 2016. Foraging behaviour, swimming performance and malformations of early stages of commercially important fishes under ocean acidification and warming. Climatic Change 1-15.
  • Poore A. G. B., Graham S. E., Byrne M. & Dworjanyn S. A., 2016. Effects of ocean warming and lowered pH on algal growth and palatability to a grazing gastropod. Marine Biology 163:99.
  • Poulton A. J., Daniels C. J., Esposito M., Humphreys M. P., Mitchell E., Ribas-Ribas M., Russell B. C., Stinchcombe M. C., Tynan Y. & Richier S., 2016. Production of dissolved organic carbon by Arctic plankton communities: responses to elevated carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II: Topical Studies in Oceanography 127:60-74.
  • Prado P., Roque A., Pérez J., Ibáñez C., Alcaraz C., Casals F. & Caiola N., 2016. Warming and acidification-mediated resilience to bacterial infection determine mortality of early Ostrea edulis life stages. Marine Ecology Progress Series 545:189-202.
  • Ricevuto E., Lanzoni I., Fattorini D., Regoli F. & Gambi M. C., 2016. Arsenic speciation and susceptibility to oxidative stress in the fanworm Sabella spallanzanii (Gmelin) (Annelida, Sabellidae) under naturally acidified conditions: An in situ transplant experiment in a Mediterranean CO2 vent system. Science of The Total Environment 544:765–773
  • Ries J. B., Ghazaleh M. N., Connolly B., Westfield I. & Castillo K. D., 2016. Impacts of seawater saturation state (ΩA = 0.4 – 4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochimica et Cosmochimica Acta 192:318–337.
  • Rosa R., Pimentel M., Galan J. G., Baptista M., Lopes V. M., Couto A., Guerreiro M., Sampaio E., Castro J., Santos C., Calado R. & Repolho T., 2016. Marine Biology 163(3):60.
  • Rosa R., Ricardo Paula J., Sampaio E., Pimentel M., Lopes A. R., Baptista M., Guerreiro M., Santos C., Campos D., Almeida-Val V. M. F., Calado R., Diniz M. & Repolho T., 2016. Neuro-oxidative damage and aerobic potential loss of sharks under elevated CO2 and warming. Marine Biology 163:119.
  • Runge J. A., Fields D. M., Thompson C. R. S., Shema S. D., Bjelland R. M., Durif C. M. F., Berit Skiftesvik A. & Browman H. I., 2016. End of the century CO2 concentrations do not have a negative effect on vital rates of Calanus finmarchicus, an ecologically critical planktonic species in North Atlantic ecosystems. ICES Journal of Marine Science 73(3):937-950.
  • Sampaio E., Maulvault A. L., Lopes V. M., Paula J. R., Barbosa V., Alves R., Pousão-Ferreira P., Repolho T., Marques A. & Rosa R., 2016. Habitat selection disruption and lateralization impairment of cryptic flatfish in a warm, acid, and contaminated ocean. Marine Biology 163:217.
  • Shao Y. T., Chang F. Y., Fu W.-C. & Yan H. Y., 2016. Acidified seawater suppresses insulin-like growth factor I mRNA expression and reduces growth rate of juvenile orange-spotted groupers, Epinephelus coioides (Hamilton, 1822). Aquaculture Research 47(3):721–731.
  • Sigwart J. D., Lyons G., Fink A., Gutowska M. A., Murray D., Melzner F., Houghton J. D. R. & Hu M. Y.-a., 2016. Elevated pCO2 drives lower growth and yet increased calcification in the early life history of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda). ICES Journal of Marine Science 73(3):970-980.
  • Small D. P., Calosi P., Boothroyd D., Widdicombe S. & Spicer J. I., 2016.The sensitivity of the early benthic juvenile stage of the European lobster Homarus gammarus (L.) to elevated pCO2 and temperature. Marine Biology 163:53.
  • Smith J. N., De’ath G., Richter C., Cornils A., Hall-Spencer J. M. & Fabricius K. E., 2016. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs. Nature Climate Change 6:1124–1129.
  • Smith J. N., Strahl J., Noonan S. H. C., Schmidt G. M., Richter C. & Fabricius K. E., 2016. Reduced heterotrophy in the stony coral Galaxea fascicularis after life-long exposure to elevated carbon dioxide. Scientific Reports 6:27019.
  • Sun T., Tang X., Zhou B. & Wang Y., 2016. Comparative studies on the effects of seawater acidification caused by CO2 and HCl enrichment on physiological changes in Mytilus edulis. Chemosphere 144:2368–2376.
  • Tahil A. S. & Dy D. T., 2016. Effects of reduced pH on the early larval development of hatchery-reared Donkey’s ear abalone, Haliotis asinine (Linnaeus 1758). Aquaculture 459:137–142.
  • Takahashi M., Noonan S. H. C., Fabricius K. E. & Collier C. J., 2016. The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents. ICES Journal of Marine Science 73(3):876-886.
  • Thompson E., Parker L., Amaral V., Bishop M., O’Connor W. & Raftos D., 2016. Wild populations of Sydney rock oysters differ in their proteomic responses to elevated carbon dioxide. Marine & Freshwater Research 67:1964–1972.
  • Tills O., Sun X., Rundle S. D., Heimbach T., Gibson T., Cartwright A., Palmer M., Rudin-Bitterli T. & Spicer J. I., 2016. Reduced pH affects pulsing behaviour and body size in ephyrae of the moon jellyfish, Aurelia aurita. Journal of Experimental Marine Biology and Ecology 480:54–61.
  • Towle E. K., Baker A. C. & Langdon C., 2016. Preconditioning to high CO2 exacerbates the response of the Caribbean branching coral Porites porites to high temperature stress. Marine Ecology Progress Series 546:75-84.
  • Verkaik K., Hamel J.-F. & Mercier A., 2016. Carry-over effects of ocean acidification in a cold water lecithotrophic holothuroid. Marine Ecology Progress Series 557:189-206.
  • Verkaik K., Hamel J.-F. & Mercier A., 2016. Impact of ocean acidification on reproductive output in the deep-sea annelid Ophryotrocha sp. (Polychaeta: Dorvilleidae). Deep Sea Research Part II: Topical Studies in Oceanography 137:368–376.
  • Waller J. D., Wahle R. A., McVeigh H. & Fields D. M., 2016. Linking rising pCO2 and temperature to the larval development and physiology of the American lobster (Homarus americanus). ICES Journal of Marine Science.
  • Walworth N. G., Fu F.-X., Webb E. A., Saito M. A., Moran D., Mcllvin M. R., Lee M. D. & Hutchins D. A., 2016. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nature Communications 7:12081.
  • Wang W., Liu G., Zhang T., Chen H., Tang L. & Mao X., 2016. Effects of elevated seawater pCO2 on early development of scallop Argopecten irradias (Lamarck, 1819). Journal of Ocean University of China 15(6):1073–1079.
  • Wang Z., Wang Y. & Yan C., 2016. Simulating ocean acidification and CO2 leakages from carbon capture and storage to assess the effects of pH reduction on cladoceran Moina mongolica Daday and its progeny. Chemosphere 155:621–629.
  • Wit J. C., Davis M. M., Mccorkle D. C. & Bernhard J. M., 2016. A short-term survival experiment assessing impacts of ocean acidification and hypoxia on the benthic foraminifer Globulimina turgida. The Journal of Foraminiferal Research 46(1):25-33
  • Young C. S. & Gobler C. J., 2016. Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS ONE 11(5):e0155152.
  • Zhan Y., Hu W., Zhang W., Liu M., Duan L., Huang X., Chang Y. & Li C., 2016. The impact of CO2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. Marine Pollution Bulletin 112(1-2):291–302.

2015

  • Baggini C., Issaris Y., Salomidi M. & Hall-Spencer J., 2015. Herbivore diversity improves benthic community resilience to ocean acidification. Journal of Experimental Marine Biology and Ecology 46998–104.
  • Baragi L. V. & Anil A. C., 2015. Interactive effect of elevated pCO2 and temperature on the larval development of an inter-tidal organism, Balanus amphitrite Darwin (Cirripedia: Thoracica). Journal of Experimental Marine Biology and Ecology 471:48–57.
  • Baragi L. V., Khandeparker L. & Anil A. C., 2015. Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture. Hydrobiologia 762(1):127-142
  • Basallote M. D., Rodriguez-Romero A., De Orte M. R., Del Valls T.A. & Riba I., 2015. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Aquatic Toxicology 166:63-71.
  • Basso L., Hendriks I. E. & Duarte C. M., 2015. Juvenile pen shells (Pinna nobilis) tolerate acidification but are vulnerable to warming. Estuaries and Coasts 38:1976.
  • Basso L., Hendriks I. E., Rodríguez-Navarro A. B., Gambi M. C. & Duarte C. M., 2015. Extreme pH conditions at a natural CO2 vent system (Italy) affect growth, and survival of juvenile pen shells (Pinna nobilis). Estuaries and Coasts 38(6):1986-1999.
  • Bermúdez R., Feng Y., Roleda M. Y., Tatters A. O., Hutchins D. A., Larsen T., Boyd P. W., Hurd C. L., Riebesell U. & Winder M., 2015. Long-term conditioning to elevated pCO2 and warming influences the fatty and amino acid composition of the diatom Cylindrotheca fusiformis. PLoS ONE 10(5):e0123945.
  • Biscéré T., Rodolfo-Metalpa R., Lorrain A., Chauvaud L., Thébault J., Clavier J. & Houlbrèque F., 2015. Responses of two scleractinian corals to cobalt pollution and ocean acidification. PLoS ONE 10(4):e0122898.
  • Boyd P. W., Dillingham P. W., McGraw C. M., Armstrong E. A., Cornwall C. E., Feng Y.-y., Hurd C. L., Gault-Ringold M., Roleda M. Y., Timmins-Schiffman E. & Nunn B. L., 2015. Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change 6(61):207–213.
  • Bromhead D., Scholey V., Nicol S., Margulies D., Wexler J., Stein M., Hoyle S., Lennert-Cody C., Williamson J., Havenhand J., Ilyina T. & Lehodey P., 2015. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Research Part II: Topical Studies in Oceanography 113:268-279.
  • Cao Z., Mu F., Wei X. & Sun Y., 2015. Influence of CO2-induced seawater acidification on the development and lifetime reproduction of Tigriopus japonicus Mori, 1938. Journal of Natural History 49(45-48):1-14.
  • Cárdenas A., Meyer F. W., Schwieder H., Wild C. & Gärdes A., 2015. The formation of aggregates in coral reef waters under elevated concentrations of dissolved inorganic and organic carbon: A mesocosm approach. Marine Chemistry 175:47–55.
  • Chelsky A., Pitt K. A. & Welsh D. T., 2015. Biogeochemical implications of decomposing jellyfish blooms in a changing climate. Estuarine, Coastal and Shelf Science 154:77–83.
  • Chen B., Zou D. & Jiang H., 2015. Elevated CO2 exacerbates competition for growth and photosynthesis between Gracilaria lemaneiformis and Ulva lactuca. Aquaculture 443:49–55
  • Chen S., Gao K. & Beardall J., 2015. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification. Global Change Biology 21(2): 629–636.
  • DePasquale E., Baumann H. & Gobler C. J., 2015. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Marine Ecology Progress Series 523:145-156.
  • Di Santo V., 2015. Ocean acidification exacerbates the impacts of global warming on embryonic little skate, Leucoraja erinacea (Mitchill). Journal of Experimental Marine Biology and Ecology 463:72-78.
  • Dixson D. L., Jennings A. R., Atema J. & Munday P. L., 2015. Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology 21(4):1454–1462.
  • Duarte C., López J., Benítez S., Manríquez P. H., Navarro J. M., Bonta C. C., Torres R. & Quijón P., 2015. Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia 180(2):1-10.
  • Duarte C., Navarro J. M., Acuña K., Torres R., Manríquez P. H., Lardies M. A., Vargas C. A., Lagos N. A. & Aguilera V., 2015. Intraspecific variability in the response of the edible mussel Mytilus chilensis (Hupe) to ocean acidification. Estuaries and Coasts 38:590-598.
  • Eklöf J. S., Havenhand J. N., Alsterberg C. & Gamfeldt L., 2015. Community-level effects of rapid experimental warming and consumer loss outweigh effects of rapid ocean acidification. Oikos 124(8):1040-1049.
  • Enochs I. C., Manzello D. P., Carlton R. D., Graham D. M., Ruzicka R. & Colella M. A., 2015. Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for the persistence of the Florida Reef Tract. Bulletin of Marine Science 91(2):271-290.
  • Esbaugh A. J., Ern R., Nordi W. M. & Johnson A. S., 2015. Respiratory plasticity is insufficient to alleviate blood acid-base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 186(1):1-13.
  • Falkenberg L. J., Connell S. D., Coffee O. E., Ghedini G. & Russell B. D., 2015. Species interactions can maintain resistance of subtidal algal habitats to an increasingly modified world. Global Ecology and Conservation 4:549–558
  • Feidantsis K., Pörtner H.-O., Antonopoulou E. & Michaelidis B., 2015. Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata. Journal of Comparative Physiology B 185(2):185-205.
  • Flynn E., Bjelde B. E., Miller N. A. & Todgham A. E., 2015. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. Conservation Physiology 3(1):cov033
  • García E., Clemente S. & Hernández J. C., 2015. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. Marine Environmental Research 110(79):61-68.
  • Georgiou L., Falter J., Trotter J., Kline D. I., Holcomb M., Dove S. G., Hoegh-Guldberg O. & McCulloch M., 2015. pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. Proceedings of the National Academy of Sciences (PNAS) of the United States of America 112(43):13219-24.
  • Ghedini G., Russell B. D. & Connell S. D., 2015. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecology Letters 18:182–187.
  • Gordillo F. J. L., Aguilera J., Wiencke C. & Jiménez C., 2015. Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. Journal of Plant Physiology 173:41-50.
  • Graham E. R., Parekh A., Devassy R. K. & Sanders R. W., 2015. Carbonic anhydrase activity changes in response to increased temperature and pCO2 in Symbiodinium–zoanthid associations. Journal of Experimental Marine Biology and Ecology 473:218–226.
  • Hernroth B., Krång A.-S. Baden S., 2015. Bacteriostatic suppression in Norway lobster (Nephrops norvegicus) exposed to manganese or hypoxia under pressure of ocean acidification. Aquatic Toxicology 159:217-24.
  • Hoins M., Van de Waal D. B., Eberlein T., Reichart G.-J., Rost B. & Sluijs A., 2015. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy. Geochimica et Cosmochimica Acta 160:267–276.
  • Houlbrèque F., Reynaud S., Godinot C., Oberhänsli F., Rodolfo-Metalpa R. & Ferrier-Pagès C., 2015. Ocean acidification reduces feeding rates in the scleractinian coral Stylophora pistillata. Limnology and Oceanography 60(1):89–99.
  • Hu M., Li L., Sui Y., Li J., Wang Y., Lu W. & Dupont S., 2015. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus. Fish & Shellfish Immunology 46(2):573-583.
  • Ivanina A. V., Hawkins C. & Sokolova I. M., 2015. Interactive effects of copper exposure and environmental hypercapnia on immune functions of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Fish & Shellfish Immunology 49:54-65.
  • Ivanina A. V., Hawkins C., Beniash E. & Sokolova I. M., 2015. Effects of environmental hypercapnia and metal (Cd and Cu) exposure on acid-base and metal homeostasis of marine bivalves. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 174-175(1):1-12.
  • Jansson A., Norkko J., Dupont S. & Norkko A., 2015. Growth and survival in a changing environment: Combined effects of moderate hypoxia and low pH on juvenile bivalve Macoma balthica. Journal of Sea Research 102:41-47.
  • Jutfelt F. & Hedgärde M., 2015. Juvenile Atlantic cod behavior appears robust to near-future CO2 levels. Frontiers in Zoology 12:11. doi:10.1186/s12983-015-0104-2
  • Kaniewska P., Chan C.-K. K., Kline D., Ling E. Y. S., Rosic N., Edwards D., Hoegh-Guldberg O. & Dove S., 2015. Transcriptomic changes in coral holobionts provide insights into physiological challenges of future climate and ocean change. PLoS ONE 10(10):e0139223
  • Keppel E. A., Scrosati R. A & Courtenay S. C., 2015. Interactive effects of ocean acidification and warming on subtidal mussels and sea stars from Atlantic Canada. Marine Biology Research 11(4):337-348.
  • Kim K.-S., Shim J. H. & Kim S., 2015. Effects of CO2 -induced ocean acidification on the growth of the larval olive flounder Paralichthys olivaceus. Ocean Science Journal 50(2):381-388.
  • King A. L., Jenkins B. D., Wallace J. R., Liu Y., Wikfors G. H., Milke L. M. & Meseck S. L., 2015. Effects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton species. Marine Ecology Progress Series 537:59-69.
  • Knorr P. O., Robbins L. L., Harries P. J., Hallock P. & Wynn J., 2015. Response of the miliolid Archaias angulatus to simulated ocean acidification. The Journal of Foraminiferal Research 45(2):109-127.
  • Kreiss C. M., Michael K., Lucassen M., Jutfelt F., Motyka R., Dupont S. & Pörtner H.-O., 2015. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). Journal of Comparative Physiology B 185(7):1-15.
  • Lane A., Campanati C., Dupont S. & Thiyagarajan V., 2015. Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm. Scientific Reports 5:10847.
  • Lefevre S., Watson S.-A., Munday P. L. & Nilsson G. E., 2015. Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus. Journal of Experimental Biology 218:2991-3001.
  • Lesniowski T. J., Gambill M., Holst S., Peck M. A., Algueró-Muñiz M., Haunost M., Malzahn A. M. & Boersma M., 2015. Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella). Marine Biology 162(6):1371-1382.
  • Lesser M. P., Fiore C., Slattery M. & Zaneveld J., 2015. Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia muta. Journal of Experimental Marine Biology and Ecology 475:11–18.
  • Levas S., Grottoli A. G., Warner M. E., Cai W.-J., Bauer J., Schoepf V., Baumann J. H., Matsui Y., Gearing Y., Melman T. F., Hoadley K. D., Pettay D. T., Hu X., Li Q., Xu H. & Wang Y., 2015. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Marine Ecology Progress Series 519:153-164.
  • Li S., Liu C., Huang J., Liu Y., Zheng G., Xie L. & Zhang R., 2015. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. The Journal of Experimental Biology 218(22):3623-31.
  • Li S., Liu Y., Liu C., Huang J., Zheng G., Xie L. & Zhang R., in press. Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming. Fish & Shellfish Immunology 45(1):194-202.
  • Liu C. & Zou D., 2015. Do increased temperature and CO2 levels affect the growth, photosynthesis, and respiration of the marine macroalga Pyropia haitanensis (Rhodophyta)? An experimental study. Hydrobiologia 745(1):285-296.
  • Luerig M. & Kunzmann A., 2015. Effects of episodic low aragonite saturation and elevated temperature on the physiology of Stylophora pistillata. Journal of Sea Research 99:26-33.
  • MacLeod C. D. & Poulin R., 2015. Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod. Marine Ecology Progress Series 537:137-150.
  • McSkimming C., Russell B. D., Tanner J. E. & Connell S. D., 2015. A test of metabolic and consumptive responses to local and global perturbations: enhanced resources stimulate herbivores to counter expansion of weedy species. Marine and Freshwater Research 67(1):96-102.
  • Michael K., Kreiss C. M., Hub M. Y., Koschnick N., Bickmeyer U., Dupont S., Pörtner H.-O. & Lucassen M., 2015. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 193(4):761-766.
  • Morrow K. M., Bourne D. G., Humphrey C., Botté E. S., Laffy P., Zaneveld J., Uthicke S., Fabricius K. E. & Webster N. S., 2015. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. Multidisciplinary Journal of Microbial Ecology 9:894–908.
  • Mos B., Byrne M. & Dworjanyn S. A., 2015. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification. Marine Environmental Research 113:39-48.
  • Mos B., Byrne M., Cowden K.L. & Dworjanyn S.A., 2015. Biogenic acidification drives density-dependent growth of a calcifying invertebrate in culture. Marine Biology 162(8): 1541-1558.
  • Moulin L., Grosjean P., Leblud J., Batigny A., Collard M. & Dubois P., in press. Long-term mesocosms study of the effects of ocean acidification on growth and physiology of the sea urchin Echinometra mathaei. Marine Environmental Research 103:103-114.
  • Näslund J., Lindstrom E., Lai F. & Jutfelt F., 2015. Behavioural responses to simulated bird attacks in marine three-spined sticklebacks after exposure to high CO2 levels. Marine & Freshwater Research 66(10):877-885.
  • Olsen K., Paul V. J. & Ross C., 2015. Direct effects of elevated temperature, reduced pH, and the presence of macroalgae (Dictyota spp.) on larvae of the Caribbean coral Porites astreoides. Bulletin of Marine Science 91(2):255-270(16).
  • Ou M., Hamilton T. J., Eom J., Lyall E. M., Gallup J., Jiang A., Lee J., Close D. A., Yun S.-S. & Brauner C. J., 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nature Climate Change 5:950–955.
  • Parker L. M., O’Connor W. A., Raftos D. A., Pörtner H.-O. & Ross P. M., 2015. Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS ONE 10(7): e0132276.
  • Peck L. S., Clark M. S., Power D., Reis J., Batista F. M. & Harper E. M., in press. Acidification effects on biofouling communities: winners and losers. Global Change Biology 21(5):1907–1913.
  • Pereira A. M., Range P., Campoy A., Oliveira A. P., Joaquim S., Matias D., Chícharo L. & Gaspar M. B., 2015. Larval hatching and development of the wedge shell (Donax trunculus L.) under increased CO2 in southern Portugal. Regional Environmental Change 9(2):1-10.
  • Pickett M. & Andersson A. J., 2015. Dissolution rates of biogenic carbonates in natural seawater at different pCO2 conditions: a laboratory study. Aquatic Geochemistry 21(6):459-485.
  • Pimentel M. S., Faleiro F., Diniz M., Machado J., Pousão-Ferreira P., Peck M. A, Pörtner H. O. & Rosa R., 2015. Oxidative stress and digestive enzyme activity of flatfish larvae in a changing ocean. PLoS ONE 10(7):e0134082.
  • Piontek J., Sperling M., Nöthig E.-M. & Engel A., 2015. Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean. Limnology and Oceanography 60(4):1392–1410.
  • Pistevos J. C. A., Nagelkerken I., Rossi T., Olmos M. & Connell S. D., 2015. Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports 5:16293
  • Ricevuto E., Benedetti M., Regoli F., Spicer J. I. & Gambi M. C., 2015. Antioxidant capacity of polychaetes occurring at a natural CO2 vent system: results of an in situ reciprocal transplant experiment. Marine Environmental Research 112:44–51.
  • Ricevuto E., Vizzini S. & Gambi M. C., 2015. Ocean acidification effects on stable isotope signatures and trophic interactions of polychaete consumers and organic matter sources at a CO2 shallow vent system. Journal of Experimental Marine Biology and Ecology 468:105–117.
  • Rivest E. B. & Hofmann G. E., 2015. Effects of temperature and pCO2 on lipid use and biological parameters of planulae of Pocillopora damicornis. Journal of Experimental Marine Biology and Ecology 473:43–52.
  • Rocker M. M., Noonan S., Humphrey C., Moya A., Willis B. L. & Bay L. K., 2015. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora. Marine Genomics 24:313-318.
  • Ruesink J. L., Yang S. & Trimble A. C., 2015. Variability in carbon availability and eelgrass (Zostera marina) biometrics along an estuarine gradient in Willapa Bay, WA, USA. Estuaries and Coasts 38(6):1908-1917.
  • Sandrini G., Jakupovic D., Matthijs H. C. P. & Huisman J., 2015. Strains of the harmful cyanobacterium Microcystis aeruginosa differ in gene expression and activity of inorganic carbon uptake systems at elevated CO2 levels. Applied and Environmental Microbiology 81(22):7730-7739.
  • Sarmento V. C., Souza T. P., Esteves A. M. & Santos P. J. P., in press. Effects of seawater acidification on a coral reef meiofauna community. Coral Reefs 34(3): 955-966.
  • Siddiqui S. & Bielmyer-Fraser G.K., 2015. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquatic Toxicology 44:228-239.
  • Sigwart J. D., Green P. A. & Crofts S. B., 2015. Functional morphology in chitons (Mollusca, Polyplacophora): influences of environment and ocean acidification. Marine Biology 162(11):2257-2264.
  • Small D. P, Calosi P., Boothroyd D., Widdicombe S. & Spicer J. I., 2015. Stage-specific changes in physiological and life-history responses to elevated temperature and pCO2 during the larval development of the European lobster Homarus gammarus (L.).Physiological and Biochemical Zoology 88(5):494-507.
  • Steckbauer A., Ramajo L., Hendriks I. E., Fernandez M., Lagos N., Prado L. & Duarte C., 2015. Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Frontiers in Marine Science 2:49.
  • Strahl J., Stolz I., Uthicke S., Vogel N., Noonan S. H. C. & Fabricius K. E., 2015. Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 184:179–186.
  • Stubler A. D., Furman B. T. & Peterson B. J., 2015. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral. Global Change Biology 21(11):4006-4020.
  • Tahil A. S. & Dy D. T., 2015. Effects of reduced pH on the growth and survival of post larvae of the donkey’s ear abalone, Haliotis asinina (L.). Aquaculture International 23(1):141-153.
  • Tanaka K., Holcomb M., Takahashi A., Kurihara H., Asami R., Shinjo R., Sowa K., Rankenburg K., Watanabe T. & McCulloch M., 2015. Response of Acropora digitifera to ocean acidification: constraints from δ11 B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34(4):1-11.
  • Taylor J. R. A., Gilleard J. M., Allen M. C. & Deheyn D. D., 2015. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Scientific Reports 5:10608.
  • Thor P. & Dupont S., 2015. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global Change Biology 21(6):2261-2271.
  • Thor P. & Oliva E. O., 2015. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Marine Biology 162(4):799-807.
  • Tirsgaard B., Moran D. & Steffensen J. F., 2015. Prolonged SDA and reduced digestive efficiency under elevated CO2 may explain reduced growth in Atlantic cod (Gadus morhua). Aquatic Toxicology 158:171-180.
  • Tomas F., Martínez-Crego B., Hernán G. & Santos R., 2015. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Global Change Biology 21(11):4021–4030.
  • Turk D., Yates K. K., Vega-Rodriguez M., Toro-Farmer G., L’Esperance C., Melo N., Ramsewak D., Dowd M., Cerdeira Estrada C., Muller-Karger F. E., Herwitz S. R. & McGillis W. R., 2015. Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys. Marine Ecology Progress Series 538:35-52.
  • Valles-Regino R., Tate R., Kelaher B., Savins D., Dowell A. & Benkendorff K., 2015. Ocean warming and CO2-induced acidification impact the lipid content of a marine predatory gastropod. Marine Drugs 13(10):6019-6037.
  • Vargas C. A., Aguilera V. M., San Martín V., Manríquez P. H., Navarro J. M., Duarte C., Torres R., Lardies M. A. & Lagos N. A., 2015. CO2-driven ocean acidification disrupts the filter feeding behavior in Chilean gastropod and bivalve species from different geographic localities. Estuaries and Coasts 38:1163–1177.
  • Viyakarn V., Lalitpattarakit W., Chinfak N., Jandang S., Kuanui P., Khokiattiwong S. & Chavanich S., 2015. Effect of lower pH on settlement and development of coral, Pocillopora damicornis (Linnaeus, 1758). Ocean Science Journal 50(2):475-480.
  • Wang Y., Li L., Hu M. & Lu W., 2015. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress. Science of the Total Environment 514:261–272.
  • Webb A., Malin G., Hopkins F., Ho K. L., Riebesell U., Schulz K., Larsen A. & Liss P., 2015. Ocean acidification has different effects on the production of DMS and DMSP measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environmental Chemistry 13(2):314-329.
  • Xu D., Wang D., Li B., Fan X., Zhang X., Ye N., Wang Y., Mou S. & Zhuang Z., 2015. Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development. Environmental Science & Technology 49(6):3548-3556.
  • Young J. N., Kranz S. A., Goldman J. A. L., Tortell P. D. & Morel F. M. M., 2015. Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Marine Ecology Progress Series 532:13-28.

2014

  • Asplund M. E., Baden S. P., Russ S., Ellis R. P., Gong N. & Hernroth B. E., 2014. Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii. Environmental Microbiology 16(4): 1029-1039.
  • Bednaršek N., Tarling G. A., Bakker D. C. E., Fielding S. & Feely R. A., 2014. Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLoS ONE 9(10):e109183.
  • Bender B., Diaz-Pulido G. & Dove S., 2014. The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. Journal of Phycology 50(1): 203–215.
  • Bender D., Diaz-Pulido G. & Dove S., 2014. Warming and acidification promote cyanobacterial dominance in turf algal assemblages. Marine Ecology Progress Series 517:271-284.
  • Bignami S., Sponaugle S. & Cowen R. K., 2014. Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Inter-Research Aquatic Biology 21:249-260.
  • Böttjer D., Karl D. M., Letelier R. M., Viviani D. A. & Church M. J., 2014. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre. Global Biogeochemical Cycles 28(6): 601-616.
  • Brinkman T. J. A. & Smith A. M., 2014. Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Marine and Freshwater Research 66(4):360-370.
  • Brown B., Edwards M. S. & Kim K. Y., 2014. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29(3):203-215.
  • Byrne M., Smith A. M., West S., Collard M., Dubois P., Graba-landry A. & Dworjanyn S. A., 2014. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength a sea urchin. Environmental Science & Technology 48(21): 12620-12627.
  • Campbell A. L., Mangan S., Ellis R. P. & Lewis C., 2014. Ocean acidification increases copper toxicity to the early life-history stages of the polychaete Arenicola marina in artificial seawater. Environmental Science and Technology 48(16): 9745–9753.
  • Campbell J. E., Craft J. D., Muehllehner N., Langdon C. & Paul V. J., 2014. Responses of calcifying algae (Halimeda spp.) to ocean acidification: implications for herbivores. Marine Ecology Progress Series 514:43-56.
  • Carreiro-Silva M., Cerqueira T., Godinho A., Caetano M., Santos R. S. & Bettencourt R., 2014. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33(2): 465-476.
  • Castillo K. D., Ries J. B., Bruno J. F. & Westfield I. T., 2014. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proceedings of the Royal Society B: Biological Sciences 281 (1797):20141856.
  • Chambers R. C., Candelmo A. C., Habeck E. A., Poach M. E., Wieczorek D., Cooper K. R., Greenfield C. E. & Phelan B. A., 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences 11:1613-1626.
  • Chen S., Beardall J. & Gao K., 2014. A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions. Biogeosciences 11:4829-4837.
  • Chivers D. P., Ramasamy R. A., McCormick M. I., Watson S.-A., Siebeck U. E & Ferrari M. C. O., 2014. Temporal constraints on predation risk assessment in a changing world. Science of The Total Environment 500-501:332-338.
  • Coello-Camba A., Agustí S., Holding J., Arrieta J. M. & Duarte C. M., 2014. Interactive effect of temperature and CO2 increase in Arctic phytoplankton. Frontiers in Marine Science 1:49.
  • Coleman D. W., Byrne M. & Davis A. R., 2014. Molluscs on acid: gastropod shell repair and strength in acidifying oceans. Marine Ecology Progress Series 509:203-211.
  • Cross E. L., Peck L. S. & Harper E. M., 2014. Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology 462:29-35.
  • Dennis III C. E., Kates D. F., Noatch M. R. & Suski C. D., 2014. Molecular responses of fishes to elevated carbon dioxide. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 48(12):7044–7052.
  • Diaz-Pulido G., Nash M. C., Anthony K. R. N., Bender D., Opdyke B. N., Reyes-Nivia C. & Troitzsch U., 2014. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nature Communications 5:3310. doi:10.1038/ncomms4310.
  • Duarte C., Navarro J. M., Acuña K., Torres R., Manríquez P. H., Lardies M. A., Vargas C. A., Lagos N. A. & Aguilera V., 2014. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research 85: 308–314.
  • Eggers S. L., ,Lewandowska A. M., Barcelos e Ramos J., Blanco-Ameijeiras S., Gallo F. & Matthiessen B., 2014. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology 20(3): 713–723.
  • Ellis R. P., Spicer J. I., Byrne J. J., Sommer U., Viant M. R., White D. & Widdicombe S., 2014. 1H NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen. Environmental Science & Technology 48(12):7044-7052. doi: 10.1021/es501601w
  • Engel A., Cisternas Novoa C., Wurst M., Endres S., Tang T., Schartau M. & Lee C., 2014. No detectable effect of CO2 on elemental stoichiometry of Emiliania huxleyi in nutrient-limited, acclimated continuous cultures. Marine Ecology Progress Series 507: 15-30.
  • Engel A., Piontek J., Grossart H.-P., Riebesell U., Schulz K. G. & Sperling M., 2014. Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. Journal of Plankton Research 36(3): 641-657.
  • Engström-Öst J., Holmborn T., Brutemar A., Hogfors H., Vehmaa A. & Gorokhova E., 2014. The effects of short-term pH decrease on the reproductive output of the copepod Acartia bifilosa – a laboratory study. Marine and Freshwater Behaviour and Physiology 47(3): 173–183.
  • Enzor L. A. & Place S. P., 2014. Is warmer better? Decreased oxidative damage in notothenioid fish after long-term acclimation to multiple stressors. The Journal of Experimental Biology 217:3301-3310.
  • Errera R. M., Yvon-Lewis S., Kessler J. D. & Campbell L., 2014. Reponses of the dinoflagellate Karenia brevis to climate change: pCO2 and sea surface temperatures. Harmful Algae 37:110–116.
  • Fabricius K. E., De’ath G., Noonan S. & Uthicke S., 2014. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proceedings of the Royal Society B: Biological Sciences 281:20132479.
  • Falkenberg L. J., Connell S. D. & Russell B. D., 2014. Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Marine Ecology Progress Series 497:87-92.
  • Fang J. K. H., Schönberg C. H. L., Mello-Athayde M. A., Hoegh-Guldberg O. & Dove S., 2014. Effects of ocean warming and acidification on the energy budget of an excavating sponge. Global Change Biology 20(4):1043-1054.
  • Frieder C. A., 2014. Present-day nearshore pH differentially depresses fertilization in congeneric sea urchins. The Biological Bulletin 226(1):1-7.
  • Frieder C. A., Gonzalez J. P., Bockmon E. E., Navarro M. O., Levin L. A., 2014. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? Global Change Biology 20(3): 754-764.
  • Frommel A.Y., Maneja R., Lowe D., Pascoe C.K., Geffen A.j., Folkvord A., Piatkowski U. & Clemmesen C., 2013. Organ damage in Atlantic herring larvae as a result of ocean acidification. ESA Online Journals: Ecological Applications 24(5):1131-43.
  • Gabay Y., Fine M., Barkay Z. & Benayahu Y., 2014. Octocoral tissue provides protection from declining oceanic pH . PLoS ONE 9(4):e91553.
  • Gaitán-Espitia J. D., Hancock J. R., Padilla-Gamiño J. L., Rivest E. B., Blanchette C. A., Reed D. C. & Hofmann G. E., 2014. Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera. Journal of Experimental Marine Biology and Ecology 457:51-58.
  • Galgani L., Stolle C., Endres S., Schulz K. G. & Engel A., 2014. Effects of ocean acidification on the biogenic composition of the sea-surface microlayer: Results from a mesocosm study. Journal of Geophysical Research: Oceans 119(11): 7911-7924.
  • Garrard S. L., Gambi M. C., Scipione M. B., Patti F. P., Lorenti M., Zupo V., Paterson D. M. & Buia M. C., 2014. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. Journal of Experimental Marine Biology and Ecology 461: 31-38.
  • Gianguzza P., Visconti G., Gianguzza F., Vizzini S., Sarà G. & Dupont S., 2014. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Marine Environmental Research 93: 10-17.
  • Gobler C. J. & Talmage S. C., 2014.Physiological response and resilience of early life-stage Eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conservation Physiology 2(1):cou004.
  • Gobler C. J., DePasquale E. L., Griffith A. W. & Baumann H., 2014. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9(1):e83648.
  • Götze S., Matoo O. B., Beniash E., Saborowski R. & Sokolova I. M., 2014. Interactive effects of CO2 and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Aquatic Toxicology 149: 65-82.
  • Gradoville M. R., White A. E. & Letelier R. M., 2014. Physiological response of Crocosphaera watsonii to enhanced and fluctuating carbon dioxide conditions. PLoS ONE 9(10):e110660.
  • Gradoville M. R., White A. E., Böttjer D., Church M. J. & Letelier R. M., 2014. Diversity trumps acidification: Lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA. Limnology and Oceanography 59(3):645-659.
  • Gräns A., Jutfelt F., Sandblom E., Jönsson E., Wiklander K., Seth H., Olsson C., Dupont S., Ortega-Martinez O., Einarsdottir I., Björnsson B. T., Sundell K. & Axelsson M., 2014. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. Journal of Experimental Biology 217:711-717.
  • Hahn S., Griesshaber E., Schmahl W. W., Neuser R. D., Ritter A.-C., Hoffmann R., Buhl D., Niedermayr A., Geske A. & Immenhauser A., 2014. Exploring aberrant bivalve shell ultrastructure and geochemistry as proxies for past sea water acidification. Sedimentology 61(6):1625-1658.
  • Hardy N. A. & Byrne M., 2014. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Marine Environmental Research 102: 78-87.
  • Heinrich D. D. U., Rummer J. L., Morash A. J., Watson S.-A., Simpfendorfer C. A., Heupel M. R. & Munday P. L., 2014. A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2. Conservation Physiology 2(1):cou047.
  • Hennon G. M. M., Quay P., Morales R. L., Swanson L. M. & Armbrust E. V., 2014. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. Journal of Phycology 50(2): 243-253.
  • Hopkins F. E. & Archer S. D., 2014. Consistent increase in dimethyl sulfide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters. Biogeosciences 11:4925-4940.
  • Horwitz R. & Fine M., 2014. High CO2 detrimentally affects tissue regeneration of Red Sea corals. Coral Reefs 33(3):819-829.
  • Hu M. Y., Casties I., Stumpp M., Ortega-Martinez O. & Dupont S. T., 2014. Energy metabolism and regeneration impaired by seawater acidification in the infaunal brittlestar, Amphiura filiformis. Journal of Experimental Biology 217:2411-2421.
  • Hu M. Y., Guh Y.-J., Stumpp M., Lee J.-R., Chen R.-D., Sung P.-H., Chen Y.-C., Hwang P.-P. & Tseng Y.-C., 2014. Branchial NH4 +-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Frontiers in Zoology 11:55.
  • Huang H., Yuan X.-C., Cai W.-J., Zhang C.-L., Li X. & Liu S., 2014. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses. Marine Ecology Progress Series 502:145-156.
  • Ibrahim H. A. H., El-Sayed W. M. M., Shaltout N. A. & El-Shorbagi E. K., 2014.. Effects of different pCO2 concentrations on marine bacterial community structure, Eastern Harbor, Alexandria, Egypt. Life Science Journal 11(10):781-789.
  • Iguchi A., Kumagai N. H., Nakamura T., Suzuki A., Sakai K. & Nojiri Y., 2014. Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations. Marine Pollution Bulletin 89(1):348-355.
  • Ivanina A. V., Hawkins C. & Sokolova I. M., 2014. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. Fish ans Shellfish Immunology 37(2):299-312.
  • Klein S. G., Pitt K. A., Rathjen K. A. & Seymour J. E., 2014. Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Global Change Biology 20(1):28-37.
  • Klok C., Wijsman J. W. M., Kaag K. & Foekema E., 2014. Effects of CO2 enrichment on cockle shell growth interpreted with a Dynamic Energy Budget model. Journal of Sea Research 94:111-116.
  • Korbee N., Navarro N. P., García-Sánchez M., Celis-Plá P. S. M., Quintano E., Copertino M. S., Pedersen A., Mariath R., Mangaiyarkarasi N., Pérez-Ruzafa A., Figueroa F. L. & Martínez B., 2014. A novel in situ system to evaluate the effect of high CO2 on photosynthesis and biochemistry of seaweeds. Aquatic Biology 22:245-259.
  • Kroeker K. J., Gaylord B., Hill T. M., Hosfelt J. D., Miller S. H. & Sanford E., 2014. The role of temperature in determining species’ vulnerability to ocean acidification: A case study using mytilus galloprovincialis. PLoS ONE 9(7):e100353.
  • Lardies M. A., Arias M. B., Poupin M. J., Manríquez P. H., Torres R., Vargas C. A., Navarro J. M. & Lagos N. A., 2014. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. Journal of Sea Research 85:308-314.
  • Loxton J., Kuklinski P., Najorka J., Spencer Jones M. & Porter J. S., 2014. Variability in the skeletal mineralogy of temperate bryozoans: the relative influence of environmental and biological factors. Marine Ecology Progress Series 510:45-57.
  • Mackenzie C. L., Lynch S.A., Culloty S. C. & Malham S. K., 2014. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L. PLoS ONE 9(6):e99712.
  • Mackenzie C. L., Ormondroyd G. A., Curling S. F., Ball R. J., Whiteley N. M. & Malham S. K., 2014. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. Plos One 9(1):e86764. doi:10.1371/journal.pone.0086764.
  • Mammitzsch K., Jost G. & Jürgens K., 2014. Impact of dissolved inorganic carbon concentrations and pH on growth of the chemolithoautotrophic epsilonproteobacterium Sulfurimonas gotlandica GD1T. MicrobiologyOpen 3(1):80-88.
  • Maneja R. H., Dineshram R., Thiyagarajan V., Skiftesvik A. B., Frommel A. Y., Clemmesen C., Geffen A. J. & Browman H. I., in press. The proteome of Atlantic herring (Clupea harengus L.) larvae is resistant to elevated pCO2. Marine Pollution Bulletin 86(1-2):154–160.
  • Manríquez P. H., Jara M. E., Loreto Mardones M., Torres R., Navarro J. M., Lardies M. A., Vargas C. A., Duarte C. & Lagos N. A., 2014. Ocean acidification affects predator avoidance behaviour but not prey detection in the early ontogeny of a keystone species. Marine Ecology Progress Series 502:157-167.
  • Manríquez P. H., Jara M. E., Torres R., Loreto Mardones M., Lagos N. A., Lardies M. A., Vargas C. A., Duarte C. & Navarro J. M., 2014. Effects of ocean acidification on larval development and early post-hatching traits in Concholepas concholepas (loco). Marine Ecology Progress Series 514:87-103.
  • Martínez-Crego B., Olivé I. & Santos R., 2014. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems. Biogeosciences 11:7237-7249.
  • Mercado J. M., Sobrino C., Neale P. J., Segovia M., Reul A., Amorim A. L., Carrillo P., Claquin P., Cabrerizo M. J., León P., Lorenzo M. R., Medina-Sánchez J. M., Montecino V., Napoleon C., Prasil O., Putzeys S., Salles S. & Yebra L., 2014. Effect of CO2, nutrients and light on coastal plankton. II. Metabolic rates. Aquatic Biology 22:43-57.
  • Navarro M. O., Bockmon E. E., Frieder C. A., Gonzalez J. P. & Levin L. A., 2014. Environmental pH, O2 and capsular effects on the geochemical composition of statoliths of embryonic squid Doryteuthis opalescens. Water 6(8):2233-2254.
  • Nguyen H. D. & Byrne M., 2014. Early benthic juvenile Parvulastra exigua (Asteroidea) are tolerant to extreme acidification and warming in its intertidal habitat. Journal of Experimental Marine Biology and Ecology 453:36-42.
  • Oliver A. E., Newbold L. K., Whiteley A. S. & van der Gast C. J., 2014. Marine bacterial communities are resistant to elevated carbon dioxide levels. Environmental Microbiology Reports 6(6):574–582.
  • Onitsuka T., Kimura R., Ono T., Takami H. & Nojiri Y., 2014. Effects of ocean acidification on the early developmental stages of the horned turban, Turbo cornutus. Marine Biology 161(5):1127-1139.
  • Pavlov A. K., Silyakova A., Granskog M. A., Bellerby R. G. J., Engel A., Schulz K. G. & Brussaard C. P. D., 2014. Marine CDOM accumulation during a coastal Arctic mesocosm experiment: No response to elevated pCO2 levels. Journal of Geophysical Research: Biogeosciences 119(6):1216–1230.
  • Pecorino D., Barker M. F., Dworjanyn S. A., Byrne M. & Lamare M. D., 2014. Impacts of near future sea surface pH and temperature conditions on fertilisation and embryonic development in Centrostephanus rodgersii from northern New Zealand and northern New South Wales, Australia. Marine Biology 161:101-110.
  • Pedersen S. A., Håkedal O. J., Salaberria I., Tagliati A., Gustavson L. M., Jenssen B. M., Olsen A. J. & Altin D., 2014. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environmental Science & Technology 48(20):12275-12284.
  • Pedersen S. A., Våge V. T., Olsen A. J., Hammer K. M. & Altin D., 2014. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus gunnerus (Copepoda: Calanoidae). Journal of Toxicology and Environmental Health, Part A: Current Issues 77(9-11):535-549.
  • Pimentell M. S., Faleirol F., Dionísio G., Repolho T., Pousão P., Machado J. & Rosa R., 2014. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. The Journal of Experimental Biology 217 (15):092635.
  • Queirós A. M., Fernandes J. A., Faulwetter S., Nunes J., Rastrick S. P. S., Mieszkowska N., Artoli Y., Yool A., Calosi P., Arvanitidis C., Findlay H. S., Barange M., Cheung W. W. L. & Widdicombe S., 2015. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology 21(1):130–143.
  • Rastrick S. P. S., Calosi P., Calder-Potts R., Foggo A., Nightingale G., Widdicombe S. & Spicer J. I., 2014. Living in warmer more acidic oceans retards physiological recovery from tidal emersion in the velvet swimming crab Necora puber (L.). Journal of Experimental Biology 217(14):2499-508.
  • Reul A., Muñoz M., Bautista B., Neale P. J., Sobrino C., Mercado J. M., Segovia M., Salles S., Kulk G., León P., Van de Poll W. H., Pérez E., Buma A. & Blanco J. M., 2014. Effect of CO2, nutrients and light on coastal plankton. III. Trophic cascade, size structure and composition. Aquatic Biology 22:59-76.
  • Reyes-Nivia C., Diaz-Pulido G. & Dove S., 2014. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae. Biogeosciences 11:4615-4626.
  • Ricevuto E., Kroeker K. J., Ferrigno F., Micheli F. & Gambi M. C., 2014. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification. Marine Biology 161(12):2909-2919.
  • Roberts D., Howard W. R., Roberts J. L., Bray S. G., Moy A. D., Trull T. W. & Hopcroft R. R., 2014. Diverse trends in shell weight of three Southern Ocean pteropod taxa collected with Polar Frontal Zone sediment traps from 1997 to 2007. Polar Biology 37(10):1445-1458.
  • Rosa R., Baptista M., Lopes V. M., Pegado M. R., Paula J. R., Trübenbach K., Costa Leal M., Calado R. & Repolho T., 2014. Early-life exposure to climate change impairs tropical shark survival. Proceedings of the Royal Society B: Biological Sciences 281(1793):20141738.
  • Rosa R., Trübenbach K., Pimentel M. S., Boavida-Portugal J., Faleiro F., Baptista M., Dionísio G., Calado R., Pörtner H. O. & Repolho T., 2014. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). Journal of Experimental Biology 217:518-525.
  • Sandeman I. A., 2014. Unexpected results from direct measurement, with a torsion microbalance in a closed system, of calcification rates of the coral Agaricia agaricites (Scleractinia:Agariicidae) and concomitant changes in seawater pH. International Journal of Tropical Biology 62(3):25-38.
  • Sanford E., Gaylord B., Hettinger A., Lenz E. A., Meyer K. & Hill T. M., 2014. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proceedings of the Royal Society B: Biological Sciences 281(1778):2013-2681.
  • Schade F. M., Clemmesen C. & Wegner K. M., 2014. Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus). Marine Biology 161(7):1667-1676.
  • Short J., Kendrick G. A., Falter J.& McCulloch M. T., 2014. Interactions between filamentous turf algae and coralline algae are modified under ocean acidification. Journal of Experimental Marine Biology and Ecology 456:70-77.
  • Silverman J., Schneider K., Kline D. I.,Rivlin C. T., Rivlin A. Hamylton S., Lazar B., Erez J. & Caldeira K., 2014. Community calcification in Lizard Island, Great Barrier Reef: a 33 year perspective. Geochimica and Cosmochimica Acta 144(1):72–81.
  • Sinutok S., Hill R., Kühl M., Doblin M. A. & Ralph P. J., 2014. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Marine Biology 161(9):2143-2154.
  • Siu N., Apple J. K. & Moyer C. L., 2014. The effects of ocean acidity and elevated temperature on bacterioplankton community structure and metabolism. 4:434-455.
  • Stubler A. D., Furman B. T. & Peterson B. J., 2014. Effects of pCO2 on the interaction between an excavating sponge, Cliona varians, and a hermatypic coral, Porites furcata. Marine Biology 161 (8):1851-1859.
  • Suckling C. C., Clark M. S., Beveridge C., Brunner L., Hughes A. D., Harper E. M., Cook E. J., Davies A. J. & Peck L. S., 2014. Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses. Invertebrate Reproduction & Development 58(3):161-175.
  • Suckling C. C., Clark M. S., Peck L. S. & Cook E. J., 2014. Experimental influence of pH on the early life-stages of sea urchins I: different rates of introduction give rise to different responses. Invertebrate Reproduction & Development 58(2):148-159.
  • Tait L. W., 2014. Impacts of natural and manipulated variations in temperature, pH and light on photosynthetic parameters of coralline–kelp assemblages. Journal of Experimental Marine Biology and Ecology 454:1-8.
  • Taylor J. D., Ellis E., Milazzo M., Hall-Spencer J. M. & Cunliffe M., 2014. Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient. FEMS Microbiology Ecology 89(3):670-678.
  • Taylor J. D., Ellis E., Milazzo M., Hall-Spencer J. M. & Cunliffe M., 2014. Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient. FEMS Microbiology Ecology 89(3):670-678.
  • Venti A., Andersson A. & Langdon C., 2014. Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform.
  • Coral Reefs
  • 33(4):979-997.
  • White M. M., Mullineaux L. S., McCorkle D. C. & Cohen A.L., 2014. Elevated pCO2 exposure during fertilization of the bay scallop Argopecten irradians reduces larval survival but not subsequent shell size. Marine Ecology Progress Series 498:173-186.
  • Williamson C. J., Brodie J., Goss B., Yallop M., Lee S. & Perkins R., 2014. Corallina and Ellisolandia (Corallinales, Rhodophyta) photophysiology over daylight tidal emersion: interactions with irradiance, temperature and carbonate chemistry. Marine Biology 161(9):2051-2068.
  • Wood H. L., Sköld H. N. & Eriksson S. P., 2014. Health and population-dependent effects of ocean acidification on the marine isopod Idotea balthica. Marine Biology 161(10):2423-2431.
  • Wu Y., Campbell D. A. & Gao K., 2014. Faster recovery of a diatom from UV damage under ocean acidification. Journal of Photochemistry and Photobiology B: Biology 140:249-254.
  • Wu Y., Campbell D. A., Irwin A. J., Suggett D. J. & Finkel Z. V., 2014. Ocean acidification enhances the growth rate of larger diatoms. Limnology and Oceanography 59(3):1027-1034.
  • Xu D., Wang Y., Fan X., Wang D., Ye N. , Zhang X., Mou S., Guan Z. & Zhuang Z., 2014. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in Antarctic sea ice algae Chlamydomonas sp. ICE-L. Environmental Science & Technology 48(14):7738-7746.
  • Yoshimura T., Sugie K., Endo H., Suzuki K., Nishioka J. & Ono T., 2014. Organic matter production response to CO2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions. Deep Sea Research Part I: Oceanographic Research Papers 94:1–14.
  • Young J. R., Poulton A. J. & Tyrrell T., 2014. Morphology of Emiliania huxleyi coccoliths on the northwestern European shelf – is there an influence of carbonate chemistry? Biogeosciences 11:4771-4782.

2013

  • Agnalt A.-L., Grefsrud E. S., Farestveit E., Larsen M. & Keulder F., 2013. Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures. Biogeosciences 10:7883-7895.
  • Albright R. & Mason B., 2013. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8(2):e56468. doi:10.1371/journal.pone.0056468.
  • Anthony K. R. N., Diaz-Pulido G., Verlinden N., Tilbrook B. & Andersson A. J., 2013. Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10: 4897-4909.
  • Arnberg M., Calosi P., Spicer J. I., Tandberg A. H. S., Nilsen M., Westerlund S. & Bechmann R. K., 2013. Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of northern shrimp (Pandalus borealis) larvae. Marine Biology 160(8), 2037-2048.
  • Arnold H. E., Kerrison P. & Steinke M., 2013. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Global Change Biology 19(4): 1007-1016.
  • Barros P., Sobral P., Range P., Chícharo L. & Matias D., 2013. Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. Journal of Experimental Marine Biology and Ecology 440: 200–206.
  • Benner I., Diner R. E., Lefebvre S. C., Li D., Komada T., Carpenter E. J. & Stillman J. H., 2013. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society B 368(1627): 20130049. doi: 10.1098/rstb.2013.0049.
  • Bignami S., Enochs I. C., Manzello D. P., Sponaugle S. & Cowen R. K., 2013. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. Proceedings of the National Academy of Sciences of the United States of America 110(18): 7366-7370.
  • Bignami S., Sponaugle S. & Cowen R. K., 2013. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Global Change Biology 19(4): 996-1006.
  • Borell E. M., Steinke M. & Fine M., 2013. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea). Coral Reefs 32(4): 937-947.
  • Bradassi F., Cumani F., Bressan G. & Dupont S., 2013. Early reproductive stages in the crustose coralline alga Phymatolithon lenormandii are strongly affected by mild ocean acidification. Marine Biology 160(8): 2261-2269.
  • Burnell O. W., Russell B. D., Irving A. D. & Connell S. D., 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Marine Ecology Progress Series 485: 37-46.
  • Byrne M., Foo S., Soars N. A., Wolfe K. D. L., Nguyen H. D., Hardy N. & Dworjanyn S. A., 2013. Ocean warming will mitigate the effects of acidification on calcifying sea urchin larvae (Heliocidaris tuberculata) from the Australian global warming hot spot. Journal of Experimental Marine Biology and Ecology 448: 250–257.
  • Byrne M., Gonzalez-Bernat M., Doo S., Foo S., Soars N. & Lamare M., 2013. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Marine Ecology Progress Series 473:235-246
  • Byrne M., Ho M. A., Koleits L., Price C., King C. K., Virtue P., Tilbrook B. & Lamare M., 2013. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Global Change Biology 19(7): 2264-2275.
  • Calosi P., Turner L. M., Hawkins M., Bertolini C., Nightingale G., Truebano M. & Spicer J. I., 2013. Multiple physiological responses to multiple environmental challenges: an individual approach. Integrative and Comparative Biology 53(4): 660-670.
  • Campbell J. E. & Fourqurean J. W., 2013. Mechanisms of bicarbonate use influence the photosynthetic carbon dioxide sensitivity of tropical seagrasses. Limnology & Oceanography 58(3): 839-848.
  • Catarino A. I., Guibourt V., Moureaux C., De Ridder C., Compere P. & Dubois P., 2013. Antarctic urchin Ctenocidaris speciosa spines: lessons from the deep. Cahiers de Biologie Marine 54:649-655.
  • Cerrano C., Cardini U., Bianchelli S., Corinaldesi C., Pusceddu A. & Danovaro R., 2013. Red coral extinction risk enhanced by ocean acidification. Scientific Reports 3: 1457. doi:10.1038/srep01457.
  • Chua C. M., Leggat W., Moya A. & Baird A. H., 2013. Near-future reductions in pH will have no consistent ecological effects on the early life-history stages of reef corals. Marine Ecology Progress Series 486: 143-151.
  • Chua C. M., Leggat W., Moya A. & Baird A. H., 2013. Temperature affects the early life history stages of corals more than near future ocean acidification. Marine Ecology Progress Series 475: 85-92.
  • Cohen-Rengifo M., Garcia E., Hernandez C. A., Hernandez J. C. & Clemente S., 2013. Global warming and ocean acidification affect fertilization and early development of the sea urchin Paracentrotus lividus. Cahiers de Biologie Marine 54:667-675.
  • Davis A. R., Coleman D., Broad A., Byrne M., Dworjanyn S. A. & Przeslawski R., 2013. Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8(2): e55939. doi:10.1371/journal.pone.0055939
  • Dove S. G., Kline D. I., Pantos O., Angly F. E., Tyson G. W. & Hoegh-Guldberg O., 2013. Future reef decalcification under a business-as-usual CO2 emission scenario. Proceedings of the National Academy of Sciences of the United States of America 110(38): 15342-15347.
  • Ellis R. P., 2013. The impact of ocean acidification, increased seawater temperature and a bacterial challenge on the immune response and physiology of the blue mussel, Mytilus edulis. PhD thesis, University of Plymouth, 253 pp.
  • Enzor L. A., Zippay M. L. & Place S. P., 2013. High latitude fish in a high CO2world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164(1): 154-161. doi: 10.1016/j.cbpa.2012.07.016.
  • Esbaugh A. J., Mager E. M., Brix K. V., Santore R. & Grosell M., 2013. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal. Aquatic Toxicology 130: 27-30.
  • Falkenberg L. J., Connell S. D. & Russell B. D., 2013. Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat. Journal of Applied Ecology 50(1): 51-58.
  • Falkenberg L. D., Russell B. D. & Connell S. D., 2013. Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172(2): 575-583.
  • Falkenberg L. J., Russell B. D. & Connell S. D., 2013. Future herbivory: the indirect effects of enriched CO2 may rival its direct effects. Marine Ecology Progress Series 492:85-95.
  • Fang J. K. H., Mello-Athayde M. A., Schönberg C. H. L., Kline D. I., Hoegh-Guldberg O. & Dove S., 2013. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biology 19(12): 3581-3591.
  • Gabay Y., Benayahu Y. & Fine, M., 2013. Does elevated pCO2 affect reef octocorals? Ecology and Evolution 3(3): 465-473.
  • Gagnon A. C., Adkins J. F., Erez J., Eiler J. M. & Guan Y., 2013. Sr/Ca sensitivity to aragonite saturation state in cultured subsamples from a single colony of coral: mechanism of biomineralization during ocean acidification. Geochimica et Cosmochimica Acta 105:240-254.
  • Gobler C. J. & Talmage S. C., 2013. Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences 10: 2241-2253.
  • Godbold J. A. & Solan M., 2013. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philosophical Transactions of the Royal Society B 368(1627): 20130186. doi: 10.1098/rstb.2013.0186.
  • Gonzalez-Bernat M. J., Lamare M. & Barker M., 2013. Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Biology 36(2): 235-247.
  • Gonzalez-Bernat M. J., Lamare M., Uthicke S. & Byrne M., 2013. Fertilisation, embryogenesis and larval development in the tropical intertidal sand dollarArachnoides placenta in response to reduced seawater pH. Marine Biology 160(8): 1927-1941. doi: 10.1007/s00227-012-2034-2.
  • Gooding R. A., 2013. Multiple abiotic changes and species interactions mediate responses to climate change on rocky shores. PhD thesis, The University of British Columbia, 179 pp.
  • Green M. A., Waldbusser G. G., Hubazc L., Cathcart E. & Hall J., 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries and Coasts 36(1): 18-27. doi: 10.1007/s12237-012-9549-0.
  • Hammer K. M. & Pedersen S. A., 2013. Deep-water prawn Pandalus borealis displays a relatively high pH regulatory capacity in response to CO2-induced acidosis. Marine Ecology Progress Series 492:139-151.
  • Hettinger A., Sanford E., Hill T. M., Hosfelt J. D., Russell A. D. & Gaylord B., 2013. The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences 10:6629-6638.
  • Hettinger A., Sanford E., Hill T. M., Lenz E. A., Russell A. D. & Gaylord B., 2013. Larval carry-over effects from ocean acidification persist in the natural environment. Global Change Biology 19(11): 3317-3326.
  • Hu M. Y., Lee J.-R., Lin L.-Y., Shih T.-H., Stumpp M., Lee M.-F., Hwang P.-P. & Tseng Y.-C., 2013. Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Frontiers in Zoology 10:51.
  • Ishida H., Golmen L. G., West J., Krüger M., Coombs P., Berge J. A., Fukuhara T., Magi M. & Kita J., 2013. Effects of CO2 on benthic biota: an in situ benthic chamber experiment in Storfjorden (Norway). Marine Pollution Bulletin 73(2): 443-451.
  • Ivanina A. V., Beniash E., Etzkorn M., Meyers T. B., Ringwood A. H. & Sokolova I. M., 2013. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria. Aquatic Toxicology 140: 123-133.
  • Ivanina A. V., Dickinson G. H., Matoo O. B., Bagwe R., Dickinson A., Beniash E. & Sokolova I. M., 2013. Interactive effects of elevated temperature and co2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 166 (1): 101-111.
  • Jansson A., Norkko J. & Norkko A., 2013. Effects of reduced pH on Macoma balthica larvae from a system with naturally fluctuating pH-dynamics. PLoS ONE 8(6): e68198. doi: 10.1371/journal.pone.0068198.
  • Jarrold M. D., Calosi P., Verberk W. C. E. P., Rastrick S. P. S., Atfield A. & Spicer J. I., 2013.Physiological plasticity preserves the metabolic relationship of the intertidal non-calcifying anthozoan-Symbiodinium symbiosis under ocean acidification. Journal of Experimental Marine Biology and Ecology 449:200-206.
  • Jokiel P. L., 2013. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of the Royal Society B: Biological Sciences 280:1764.
  • Jutfelt F. & Hedgärde M., 2013. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure. Frontiers in Zoology 10:81. doi:10.1186/1742-9994-10-81.
  • Jutfelt F., Bresolin de Souza K., Vuylsteke A. & Sturve J., 2013. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8(6): e65825. doi:10.1371/journal.pone.0065825.
  • Kroeker K. J., Gambi M. C. & Micheli F., 2013. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proceedings of the National Academy of Sciences of the USA 110(31): 12721-12726.
  • Lane A. C., Mukherjee J., Chan V. B. S. & Thiyagarajan V., 2013. Decreased pH does not alter metamorphosis but compromises juvenile calcification of the tube worm Hydroides elegans. Marine Biology 160(8): 1983-1993.
  • Lewis C., Clemow K. & Holt W. V., 2013. Metal contamination increases the sensitivity of larvae but not gametes to ocean acidification in the polychaetePomatoceros lamarckii (Quatrefages). Marine Biology 160(8): 2089-2101.
  • Long W. C., Swiney K. M. & Foy R. J., 2013. Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus. Marine Pollution Bulletin 69(1): 38-47.
  • Long W. C., Swiney K. M., Harris C., Page H. N. & Foy R. J., 2013. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus) and tanner crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS ONE 8(4): e60959. doi:10.1371/journal.pone.0060959.
  • Losh J. L., 2013. The response of nitrogen-limited marine phytoplankton to increasing carbon dioxide. PhD thesis, Princeton University, 175 pp.
  • Maas E. W., Law C. S., Hall J. A., Pickmere S., Currie K. I., Chang F. H., Matt Voyles K. & Caird D., 2013. Effect of ocean acidification on bacterial abundance, activity and diversity in the Ross Sea, Antarctica. Aquatic Microbial Ecology 70: 1-15.
  • Manríquez P. H., Jara M. E., Mardones M. L., Navarro J. M., Torres R., Lardies M. A., Vargas C. A., Duarte C., Widdicombe S., Salisbury J. & Lagos N. A., 2013. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS ONE 8(7): e68643.
  • Mass T., Drake J. L., Haramaty L., Kim J. D., Zelzion E., Bhattacharya D. & Falkowski P. G., 2013. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Current Biology 23(12): 1126-1131.
  • Matoo O. B., Ivanina A. V., Ullstad C., Beniash E. & Sokolova I. M., 2013. Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164(4): 545-553.
  • McIntyre-Wressnig A., Bernhard J. M., McCorkle D. C. & Hallock P., 2013. Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Marine Ecology Progress Series 472: 45-60.
  • Medina-Rosas P., Szmant A. M. & Whitehead R. F., 2013. CO2 enrichment and reduced seawater pH had no effect on the embryonic development of Acropora palmata (Anthozoa, Scleractinia). Invertebrate Reproduction & Development 57(2) 132-141. doi: 10.1080/07924259.2012.704407.
  • Mukherjee J., Wong K. K. W., Chandramouli K. H., Qian P.-Y., Leung P. T. Y., Wu R. S. S. & Thiyagarajan V., 2013. Proteomic response of marine invertebrate larvae to ocean acidification and hypoxia during metamorphosis and calcification. The Journal of Experimental Biology 216:4580-4589.
  • Munguia P. & Alenius B., 2013. The role of preconditioning in ocean acidification experiments: a test with the intertidal isopod Paradella dianae. Marine and Freshwater Behaviour and Physiology 46(1): 33-44.
  • Murray F., Widdicombe S., McNeill C. L. & Solan M., 2013. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions. Marine Pollution Bulletin 73(2): 435-442.
  • Niehoff B., Schmithüsen T., Knüppel N., Daase M., Czerny J. & Boxhammer T., 2013. Mesozooplankton community development at elevated CO2concentrations: results from a mesocosm experiment in an Arctic fjord. Biogeosciences 10: 1391-1406.
  • Noonan S. H. C., Fabricius K. E. & Humphrey C., 2013. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE 8(5): e63985.
  • O’Donnell M. J., George M. N. & Carrington E., 2013. Mussel byssus attachment weakened by ocean acidification. Nature Climate Change 3: 587–590.
  • Ogawa D., Bobeszko T., Ainsworth T. & Leggat W., 2013. The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera. Coral Reefs 32: 895-907.
  • Ohki S., Irie T., Inoue M., Shinmen K., Kawahata H., Nakamura T., Kato A., Nojiri Y., Suzuki A., Sakai K. & van Woesik R., 2013. Calcification responses of symbiotic and aposymbiotic corals to near-future levels of ocean acidification. Biogeosciences 10:6807-6814.
  • Olabarria C., Arenas F., Viejo R. M., Gestoso I., Vaz-Pinto F., Incera M., Rubal M., Cacabelos E., Veiga P. & Sobrino C., 2013. Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 112(7): 1065-1079.
  • Pedersen S. A., Hansen B. H., Altin D. & Olsen A. J., 2013. Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2-acidified seawater: effects on survival and development. Biogeosciences 10:7481-7491.
  • Pespeni M. H., Chan F., Menge B. A. & Palumbi S. R., 2013. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current ecosystem. Integrative & Comparative Biology 53(5): 857-870.
  • Poore A. G. B., Graba-Landry A., Favret M., Sheppard Brennand H., Byrne M. & Dworjanyn S. A., 2013. Direct and indirect effects of ocean acidification and warming on a marine plant–herbivore interaction. Oecologia 173(3): 1113-1124.
  • Porzio L. , Garrard S. L. & Buia M. C., 2013. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology 160(8): 2247-2259.
  • Raz B.-A., Ido S., Noam M., Oded N. & Ori L., 2013. Effects of sub-lethal CO2(aq) concentrations on the performance of intensively reared gilthead seabream (Sparus aurata) in brackish water: flow-through experiments and full-scale RAS results. Aquacultural Engineering 56:18–25.
  • Rosa R., Trübenbach K., Repolho T., Pimentel M., Faleiro F., Boavida-Portugal J., Baptista M., Lopes V. M., Dionísio G., Costa Leal M., Calado R. & Pörtner H. O., 2013. Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proceedings of the Royal Society B 280(1768): 20131695. doi: 10.1098/rspb.2013.1695.
  • Russell B. D., Connell S. D., Findlay H. S., Tait K., Widdicombe S. & Mieszkowska N., 2013. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Philosophical Transactions of the Royal Society B 368(1627): 20120438. doi: 10.1098/rstb.2012.0438.
  • Russell B. D., Connell S. D., Uthicke S., Muehllehner N., Fabricius K. E. & Hall-Spencer J. M., 2013. Future seagrass beds: can increased productivity lead to increased carbon storage? Marine Pollution Bulletin 73(2): 463–469.
  • Schiffer M., 2013. Effects of ocean acidification on the physiology of different life stages of Hyas araneus. PhD thesis, Universität Bremen, 184 pp.
  • Stumpp M., Hu M., Casties I., Saborowski R., Bleich M., Melzner F. & Dupont S., 2013. Digestion in sea urchin larvae impaired under ocean acidification. Nature Climate Change 3: 1044–1049.
  • Takahashi A. & Kurihara H., 2013. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment.Coral Reefs 32(1): 305-314.
  • Tanaka K., Ono T., Fujioka Y. & Ohde S., 2013. Fluoride in non-symbiotic coral associated with seawater carbonate. Marine Chemistry 149: 45–50.
  • Tatters A. O., Flewelling L. J., Fu F., Granholm A. A. & Hutchins D. A., 2013. High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from Southern California waters. Harmful Algae 30: 37-43.
  • Teneva L. , Dunbar R. B. , Mucciarone D. A., Dunckley J. F. & Koseff J. R., 2013. High-resolution carbon budgets on a Palau back-reef modulated by interactions between hydrodynamics and reef metabolism. Limnology and Oceanography 58(5): 1851-1870.
  • Torstensson A., Hedblom M., Andersson J., Andersson M. X. & Wulff A., 2013. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei. Biogeosciences 10:6391-6401.
  • Troedsson C., Bouquet J.-M., Lobon C. M., Novac A., Nejstgaard J. C., Dupont S., Bosak S., Jakobsen H. H., Romanova N., Pankoke L. M., Isla A., Dutz J., Sazhin A. F. & Thompson E. M., 2013. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: a mesocosm study. Marine Biology 160(8): 2175-2187.
  • Tseng Y.-C., Hub M. Y., Stumpp M., Lina L.-Y., Melzner F. & Hwang P.-P., 2013. CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes).
  • Uthicke S., Pecorino D., Albright R., Negri A. P., Cantin N., Liddy M., Dworjanyn S., Kamya P., Byrne M. & Lamare M., 2013. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS ONE 8(12): e82938. doi:10.1371/journal.pone.0082938.
  • Wang G., Yagi M., Yin R., Lu W. & Ishimatsu A., 2013. Effects of elevated seawater CO2 on feed intake, oxygen consumption and morphology of Aristotle’s lantern in the sea urchin Anthocidaris crassispina. suppl.):192-200.
  • Webster N. S., Negri A. P., Flores F., Humphrey C., Soo R., Botté E. S., Vogel N. & Uthicke S., 2013. Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa. Environmental Microbiology Reports 5(2): 243-251. doi: 10.1111/1758-2229.12006.
  • Webster N. S., Uthicke S., Botté E., Flores F. & Negri A. P., 2013. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology 19(1): 303-315. doi: 10.1111/gcb.12008.
  • White M. M., McCorkle D. C., Mullineaux L. S. & Cohen A. L., 2013. Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE 8(4): e61065. doi:10.1371/journal.pone.0061065.
  • Wolfe K., Dworjanyn S. A. & Byrne M., 2013. Thermal and pH/pCO2 fluctuations in the intertidal habitat of Heliocidaris erythrogramma: effects on post-metamorphic juveniles. Cahiers de Biologie Marine 54:657-666.
  • Wolfe K., Dworjanyn S. A. & Byrne M., 2013. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Global Change Biology 19(9): 2698-2707.
  • Yu P. C., Sewell M. A., Matson P. G., Rivest E. B., Kapsenberg L., Hofmann G., 2013. Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2. PLoS ONE 8(1): e52448. doi:10.1371/journal.pone.0052448.

2012

  • Albright R., Bland C., Gillette P., Serafy J. E., Langdon C. & Capo T. R., 2012. Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios. Journal of Experimental Marine Biology and Ecology 426-427: 12-17.
  • Ardelan M. V. Sundeng K., Slindea G. A., Gjøsund N. S., Nordtug T., Olsen A. J., Steinnes E. & Torp T. A., 2012. Impacts of possible CO2 seepage from sub-seabed storage on trace elements mobility and bacterial distribution at sediment-water interface. Energy Procedia 23: 449-461.
  • Berge T., Daugbjerg N. & Hansen P. J., 2012. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae 20: 101-110.
  • Burdett H. L., Aloisio E., Calosi P., Findlay H. S., Widdicombe S., Hatton A. D. & Kamenos N. A., 2012. The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae. Marine Biology Research 8(8):756–763.
  • Campbell J. E., 2012. The effects of carbon dioxide fertilization on the ecology of tropical seagrass communities. PhD thesis. Florida International University. FIU Electronic Theses and Dissertations. Paper 693.
  • Catarino A. I., De Ridder C., Gonzalez M., Gallardo M.& Dubois P., 2012. Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biology 35(3):455-461 doi:10.1007/s00300-011-1074-2
  • de la Haye K. L., Spicer J. I, Widdicombe S. & Briffa M., 2012. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. Journal of Experimental Marine Biology and Ecology 412:134-140. doi:10.1016/j.jembe.2011.11.013.
  • Devine B. M., Munday P. L. & Jones G. P., 2012. Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs 31(1):229-238 doi:10.1007/s00338-011-0837-0
  • Donohue P., Calosi P., Bates A. H., Laverock B., Rastrick S., Mark F. C., Strobel A. & Widdicombe S., 2012. Impact of exposure to elevated pCO2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura. Aquatic Biology 15(1):73-86.
  • Dupont S. & Thorndyke M., 2012. Relationship between CO2-driven changes in extracellular acid–base balance and cellular immune response in two polar echinoderm species. Journal of Experimental Marine Biology and Ecology 424-425: 32-37.
  • Eklöf J. S., Alsterberg C., Havenhand J. N., Sundbäck K., Wood H. L. & Gamfeldt L., 2012. Experimental climate change weakens the insurance effect of biodiversity. Ecology Letters 15(8): 864–872.
  • Ericson J. A., Ho M. A., Miskelly A., King C. K., Virtue P., Tilbrook B. & Byrne M., 2012. Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biology 35(7): 1027-1034. doi: 10.1007/s00300-011-1150-7.
  • Esbaugh A. J., Heuer R. & Grosell M., 2012. Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 182(7): 921-934. doi: 10.1007/s00360-012-0668-5.
  • Falter J. L., Lowe R. J., Atkinson M. J. & Cuet P., 2012. Seasonal coupling and de-coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia. Journal of Geophysical Research 117: C05003. doi:10.1029/2011JC007268.
  • Fraile-Nuez E., González-Dávila M., Santana-Casiano J. M., Arístegui J., Alonso-González I. J., Hernández-León S., Blanco M. J., Rodríguez-Santana A., Hernández-Guerra A., Gelado-Caballero M. D., Eugenio F., Marcello J., de Armas D., Domínguez-Yanes J. F., Montero M. F., Laetsch D. R., Vélez-Belchí P., Ramos A., Ariza A. V., Comas-Rodríguez I. & Benítez-Barrios V. M., 2012. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response. Scientific Reports 2: 486. doi:10.1038/srep00486
  • Hammer K. M., Pedersen S. A. & Størseth T. R., 2012. Elevated seawater levels of CO2 change the metabolic fingerprint of tissues and hemolymph from the green shore crab Carcinus maenas. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7(3): 292-302. doi: 10.1016/j.cbd.2012.06.001.
  • Hammond L. M. & Hofmann G. E., 2012. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO2 seawater conditions. Journal of Experimental Biology 215: 2445-2454.
  • Hernroth B. H., Nilsson Sköld H., Wiklander K., Jutfelt F. & Baden S., 2012. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus. Fish & Shellfish Immunology 33(5): 1095-1101.
  • Hettinger A., Sanford E., Hill T. M., Russell A. D., Sato K. N. S., Hoey J., Forsch M., Page H. N. & Gaylord B., 2012. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93(12), 2758-2768. doi: 10.1890/12-0567.1
  • Heuer R. M., Esbaugh A. J. & Grosell M., 2012. Ocean acidification leads to counterproductive intestinal base loss in the Gulf toadfish (Opsanus beta).Physiological and Biochemical Zoology 85(5): 450-459.
  • Hoogstraten A., Peters M., Timmermans K. R. & de Baar, H. J. W., 2012. Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae). Biogeosciences 9:1885-1896.
  • Kroeker K. J., Micheli F. & Gambi M. C., 2012. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3(2): 156-159. doi:10.1038/nclimate1680
  • Kurihara H., Takano Y., Kurokawa D. & Akasaka K., 2012. Ocean acidification reduces biomineralization-related gene expression in the sea urchin,Hemicentrotus pulcherrimus. Marine Biology 159(12): 2819-2826. doi: 10.1007/s00227-012-2043-1
  • Lomas M. W., Hopkinson B. M., Losh J. L., Ryan D. E., Shi D. L., Xu Y. & Morel F. M. M., 2012. Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquatic Microbial Ecology 66:211-222.
  • Losh J. L., Morel F. M. M. & Hopkinson B. M., 2012. Modest increase in the C:N ratio of N-limited phytoplankton in the California Current in response to high CO2. Marine Ecology Progress Series 468: 31-42.
  • doi:10.1371/journal.pone.0068643
  • Matson P. G., Yu P. C., Sewell M. A. & Hofmann G. E., 2012. Development under elevated pCO2 conditions does not affect lipid utilization and protein content in early life-history stages of the purple sea urchin, Strongylocentrotus purpuratus. Biological Bulletin 223(3): 312-327.
  • Moyer R. P., Viehman T. S., Piniak G. A. & Gledhill D. K., 2012. Linking seasonal changes in benthic community structure to seawater chemistry. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012. 8D Effects of ocean acidification. 5 pp.
  • Nakamura M. & Morita M., 2012. Sperm motility of the scleractinian coralAcropora digitifera under preindustrial, current, and predicted ocean acidification regimes. Aquatic Biology 15:299-302.
  • Navarro J. M., Torres R., Acuña K., Duarte C., Manriquez P. H., Lardies M., Lagos N. A., Vargas C. & Aguilera V., 2012. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90(3): 1242-1248.
  • Newbold L. K., Oliver A. E., Booth T., Tiwari B., DeSantis T., Maguire M., Andersen G., van der Gast C. J. & Whiteley A. S., 2012. The response of marine picoplankton to ocean acidification. Environmental Microbiology 14(9), 2293-2307.
  • Parker L. M., Ross P. M., O’Connor W. A., Borysko L., Raftos D. A. & Pörtner H.-O., 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology 18(1):82-92 doi:10.1111/j.1365-2486.2011.02520.x
  • Place S. P. & Smith B. W., 2012. Effects of seawater acidification on cell cycle control mechanisms in Strongylocentrotus purpuratus embryos. PLoS ONE 7(3): e34068.
  • Putnam H. M., Mayfield A. B., Fan T. Y., Chen C. S., & Gates R. D., 2012. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Marine Biology 160(8), 2157-2173.
  • Rossoll D., Bermúdez R., Hauss H., Schulz K. G., Riebesell U., Sommer U. & Winder M., 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7(4): e34737. doi: 10.1371/journal.pone.0034737.
  • Silverman J., Kline D. I., Johnson L., Rivlin T., Schneider K., Erez J., Lazar B. & Caldeira K., 2012. Carbon turnover rates in the One Tree Island reef: a 40-year perspective. Journal of Geophysical Research 117: G03023. doi:10.1029/2012JG001974.
  • Spicer J. I. & Widdicombe S., 2012. Acute extracellular acid–base disturbance in the burrowing sea urchin Brissopsis lyrifera during exposure to a simulated CO2 release. Science of The Total Environment 427: 203-207. doi: 10.1016/j.scitotenv.2012.02.051.
  • Strobel, A. Hu M. Y. A., Gutowska M. A., Lieb B., Lucassen M., Melzner F., Pörtner H. O. & Mark F. C., 2012. Influence of temperature, hypercapnia, and development on the relative expression of different hemocyanin isoforms in the common cuttlefish Sepia officinalis. Journal of Experimental Zoology 317(8):511-23. doi: 10.1002/jez.1743.
  • Styf H. K., Nilsson Sköld H. & Eriksson S. P., in press. Embryonic response to long-term exposure of the marine crustacean Nephrops norvegicus to ocean acidification and elevated temperature. Ecology and Evolution 2(2):341-353.
  • Suggett D. J., Hall-Spencer J. M., Rodolfo-Metalpa R., Boatman T. G., Payton R., Tye Pettay D., Johnson V. R., Warner M. E. & Lawson T., 2012. Sea anemones may thrive in a high CO2 world. Global Change Biology 18(10): 3015-3025. doi: 10.1111/j.1365-2486.2012.02767.x
  • Talmage S. C. & Gobler C. J., 2012. Effects of CO2 and the harmful algaAureococcus anophagefferens on growth and survival of oyster and scallop larvae. Marine Ecology Progress Series 464:121-134.
  • Towanda T. & Thuesen E. V., 2012. Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima. Biology Open 1(7): 615-621. doi: 10.1242/​bio.2012521.
  • Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 165(2):119-130.
  • Van Colen C., Debusschere E., Braeckman U., Van Gansbeke D. & Vincx M., 2012. The early life history of the clam Macoma balthica in a high CO2 world. PLoS ONE 7(9): e44655. doi:10.1371/journal.pone.0044655
  • Vogel N. & Uthicke S., 2012. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. Journal of Experimental Marine Biology and Ecology 424-425: 15-24.
  • Wolfe K., Smith A. M., Trimby P. & Byrne M., 2012. Vulnerability of the paper nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution. Biological Bulletin 223(2): 236-244.

2011

  • Albright R. & Langdon C., 2011. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biology 17(7):2478-2487 doi:10.1111/j.1365-2486.2011.02404.x
  • Arnosti C., Grossart H. P., Mühling M., Joint I. & Passow U., 2011. Dynamics of extracellular enzyme activities in seawater under changed atmospheric pCO2: a mesocosm investigation. Aquatic Microbial Ecology 64(3):285-298
  • Byrne M., Ho M., Wong E., Soars N. A., Selvakumaraswamy P., Shepard-Brennand H., Dworjanyn S. A. & Davis A. R., 2011. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proceedings of the Royal Society of London. Series B: Biological Sciences doi:10.1098/rspb.2010.2404.
  • Christensen A. B., Nguyen H. D. & Byrne M., 2011. Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: Inferences for survivorship in a changing ocean. Journal of Experimental Marine Biology and Ecology 403(1-2):31-38 doi:10.1016/j.jembe.2011.04.002
  • Cummings V., Hewitt J., Van Rooyen A., Currie K., Beard S., Thrush S., Norkko J., Barr N., Heath P., Halliday N. J., Sedcole R., Gomez A., McGraw C. & Metcalf V., 2011. Ocean acidification at high latitudes: Potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6(1): e16069
  • de la Haye K. L., Spicer J. I., Widdicombe S.& Briffa M., 2011. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Animal Behaviour 82(3):495-501 doi:10.1016/j.anbehav.2011.05.030
  • Dissanayake A. & Ishimatsu A., 2011. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES Journal of Marine Science 68(6):1147-1154
  • Ferrari M. C. O., Dixon D. L., Munday P. L., McCormick M. I., Meekan M. G., Sih A.& Chivers D. P., 2011. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Global Change Biology doi: 10.1111/j.1365-2486.2011.02439.x
  • Fujita K., Hikami M., Suzuki A., Kuroyanagi A., Sakai K., Kawahata H.& Nojiri Y., 2011. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8(8):2089-2098
  • Gaylord B., Hill T. M., Sanford E., Lenz E. A., Jacobs L. A., Sato K. N., Russell A. D.& Hettinger A., 2011. Functional impacts of ocean acidification in an ecologically critical foundation species. The Journal of Experimental Biology 214(15):2586-2594
  • Hammer K. M., Kristiansen E. & Zachariassen K. E., 2011. Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). Marine Environmental Research 72(3):135-142 doi:10.1016/j.marenvres.2011.07.002
  • Kimura R. , Takami H., Ono T., Onitsuka T. & Nojiri Y., 2011. Effects of elevated pCO2 on the early development of the commercially important gastropod, Ezo abalone Haliotis discus hannai 20(5):357-366 doi:10.1111/j.1365-2419.2011.00589.x
  • King A. L., Sañudo-Wilhelmy S. A., Leblanc K., Hutchins D. A. & Fu F., 2011. CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom. Multidisciplinary Journal of Microbial Ecology 5:1388-1396
  • Meakin N. G. & Wyman M., 2011. Rapid shifts in picoeukaryote community structure in response to ocean acidification. The International Society for Microbial Ecology Journal 5:1397-1405
  • Moheimani N. R. & Borowitzka M. A., 2011. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Applied Microbiology and Biotechnology 90(4):1399-1407
  • Nakamura M., Ohki S., Suzuki A. & Sakai K., 2011. Coral larvae under ocean acidification: Survival, metabolism, and metamorphosis. PLoS ONE 6(1): e14521
  • Parker L. M., Ross P. M. & O’Connor W. A., 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Biomedical and Life Sciences 158(3):689-697
  • Russell B. D., Passarelli C. A. & Connell S. D., 2011. Forecasted CO2 modifies the influence of light in shaping subtidal habitat. Journal of Phycology 47(4):744-752 doi: 10.1111/j.1529-8817.2011.01002.x
  • Spicer J. I., Widdicombe S., Needham H. R. & Berge J. A., 2011. Impact of CO2-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. Journal of Experimental Marine Biology and Ecology 407(1):19-25
  • Suffrian K., Schulz K. G., Gutowska M. A., Riebesell U. & Bleich M., 2011. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist 190(3):596-608
  • Sunday J. M., Crim R. N., Harley C. D. G. & Hart M. W., 2011. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6(8): e22881
  • Venn A., Tambutté E., Holcomb M., Allemand D. & Tambutté S., 2011. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6(5):e20013
  • Wood H. L., Spicer J. I., Kendall M. A., Lowe D. M. & Widdicombe S., 2011. Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biology 34(7):1033-1044
  • Yu P. C., Matson P. G., Martz T. R. & Hofmann G. E., 2011. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. Journal of Experimental Marine Biology and Ecology 400(1-2):288-295

2010

  • Berge T., Gaugbjerg N., Balling Andersen B. & Hansen P. J., 2010. Effect of lowered pH on marine phytoplankton growth rates. Marine Ecology Progress Series 416:79-91
  • Byrne M., Soars N., Ho M., Wong E., McElroy D., Selvakumaraswamy P., Dworjanyn S.& Davis A., 2010. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology 157(9):2061-2069
  • Byrne M., Soars N., Selvakumaraswamy P., Dworjanyn S. A. & Davis A., R., 2010. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research 69:234-239.
  • Dissanayake A., Clough R., Spicer J. I. & Jones M. B., 2010. Effects of hypercapnia on acid-base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquatic Biology 11:27-36.
  • Ericson J. A., Lamare M. D., Morley S. A. & Barker M. F., 2010. The response of two ecologically important Antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Marine Biology 157(12):2689-2702
  • Fu F. X., Place A. R., Garcia N. S. & Hutchins D. A., 2010. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquatic Microbial Ecology 59(1):55-65.
  • Jiang Z. J., Huang X.-P. & Zhang J.-P., 2010. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. Journal of Integrative Plant Biology 52(10):904-9013.
  • Kadar E., Simmance F., Martin O., Voulvoulis N., Widdicombe S., Mitov S., Lead J. R. & Readman J. W., 2010. The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification. Environmental Pollution 158(12):3490-3497.
  • Kawaguchi S., Kurihara H., King R., Hale L., Berli T., Robinson J. P., Ishida A., Wakita M., Virtue P., Nicol S. & Ishimatsu A., 2011. Will krill fare well under Southern Ocean acidification? Biology Letters 7:288-291. doi: 10.1098/rsbl.2010.0777
  • Kim J.-M., Lee K., Yang E. J., Shin K., Noh J. H., Park K., Hyun B., Jeong H.-J., Kim J.-H., Kim, K. Y., Kim M., Kim, H.-C., Jang P.-G. & Jang M.-C., 2010. Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environmental Science & Technology 44: 8140-8143
  • Kranz, S. A., Levitan, O., Richter, K.-U., Pràsil, O., Berman-Frank, I. & Rost, B., 2010. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: Physiological responses. Plant Physiology 154:334-345
  • Lefebvre S. C., Harris G., Webster R., Leonardos N., Geider R. J., Raines C. A., Read B. A. & Garrido J. L., 2010. Characterization and expression analysis of the Lhcf gene family in Emiliania huxleyi (Haptophyta) reveals differential responses to light and CO2. Journal of Phycology 46(1):123-134
  • Levitan O., Kranz S. A., Spungin D., Pràsil O., Rost B. & Berman-Frank I., 2010. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: A mechanistic view. Plant Physiology 154:346-356
  • Nielsen L. T., Jakobsen H. H. & Hansen P. J., 2010. High resilience of two coastal plankton communities to twenty-first century seawater acidification: Evidence from microcosm studies. Marine Biology Research 6(6): 542-555
  • O’Donnell M. J., Todgham A. E., Sewell M. A., Hammond L. M., Ruggiero K., Fangue N. A., Zippay M. L. & Hofmann G. E., 2010. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series 398:157-171
  • Parker L. M., Ross P. M. & O’Connor W. A., 2010. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology 157(11): 2435-2452
  • Sheppard Brennand H., Soars N., Dworjanyn S. A., Davis A. R. & Byrne M., 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLOS ONE 5(6):e11372.
  • Shi D., Xu, Y., Hopkinson B. M. & Morel F. M. M., 2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327(5966): 676-679
  • Wang Y., Smith Jr. W. O., Wang X. & Li S., 2010. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species. Geophysical Research Letters 37:L09604

2009

  • Arnold K. E., Findlay H. S., Spicer J. I., Daniels C. L. & Boothroyd D., 2009. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosciences 6:1747-1754.
  • Byrne M., Ho M., Selvakumaraswamy P., Nguyen H. D., Dworjanyn S. A. & Davis A. R., 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of The Royal Society 276:1883-1888.
  • Cohen A. L., McCorkle D. C., de Putron S., Gaetani G. A. & Rose K. A., 2009. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochemistry Geophysics Geosystems 10(7): Q07005.
  • Egilsdottir H., Spicer J. I. & Rundle, S. D., 2009. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Marine Pollution BulletinM 56:1187-1191.
  • Findlay H. S., Kendall M. A., Spicer J. I. & Widdicombe S., 2009. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Marine Ecology Progress Series 389:193-202
  • Gooding R. A., Harley C. D. G. & Tang E., 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 1-6
  • Green M. A., Waldbusser G. G., Reilly S. L., Emerson K. & O'Donnell S., 2009. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography 54:1048-1059.
  • Lee P. A., Rudisill J. R., Neeley A. R., Maucher J. M., Hutchins D. A., Feng Y., Hare C. E., Leblanc K., Rose J. M., Wilhelm S. W., Rowe J. M. & DiTullio G. R., 2009. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate. Marine Ecology Progress Series 388: 41-49
  • Miller A. W., Reynolds A. C., Sobrino C. & Riedel G. F., 2009. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661.
  • Muehllehner N. & Edmunds P. J., 2009. Effects of ocean acidification and increased temperature on skeletal growth of two scleractinian corals, Pocillopora meandrina and Porites rus. Proceedings of the 11th International Coral Reef Symposium
  • Ohde S. & Tanaka K., 2009. Anthropogenic surface ocean acidification with increasing atmospheric carbon dioxide and its impact on coral calcification. In: Davin T. B. & Branne A. P. (Eds.), Coral reefs: Biology, threats and restoration. pp. 77-92. Nova Publishers.
  • Parker L. M., Ross P. M. & O’Connor W. A., 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology 15(9): 2123-2136
  • Rose J. M., Feng Y., Gobler C. J., Gutierrez R., Hare C. E., Leblanc K. & Hutchins D. A., 2009. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Marine Ecology Progress Series 388: 27-40
  • Semesi S., Kangwe, J. & Björk, M., in press., 2009. Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science 84:337-341.
  • Watson S.-A., Southgate P. C., Tyler P. A. & Peck L. S., 2009. Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. Journal of Shellfish Research 28(3):431-437

2008

  • De Bodt C., Harlay, J. & Chou, L, 2008. Biocalcification by Emiliania huxleyi in batch culture experiments. Mineralogical Magazine 72:251-256.
  • Feng Y., Warner M. E., Zhan Y., Sun J., Fu F., Rose J. M. & Hutchins D. A., 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43:87-98.
  • Findlay H. S., Kendall M. A., Spicer J. I., Turley C. & Widdicombe S., 2008. Novel microcosm system for investigating the effects of elevated carbon dioxide and temperature on intertidal organisms. Aquatic Biology 3: 51-62.
  • Fu F.-X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P. W., Warner, M. E., Sañudo-Wilhelmy, S. A. & Hutchins, D. A., 2008. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnology and Oceanography 53:2472-2484.
  • Kurihara H., 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373:275-284.
  • Kurihara H., Matsui M., Furukawa H., Hayashi M. & Ishimatsu A., 2008. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. Journal of Experimental Marine Biology and Ecology 367
  • Marshall D. J., Santos J. H., Leung K. M. Y. & Chak W. H., 2008. Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Marine Environmental Research
  • Taddei D., Cuet P., Frouin P., Esbelin C. & Clavier J., 2008. Low community photosynthetic quotient in coral reef sediments. C. R. Biologies 331: 668-677. doi:10.1016/j.crvi.2008.06.006

2007

  • Fu F.-X., Warner M., E., Zhang Y., Feng Y. & Hutchins D., A., 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43:485-496.
  • Hutchins D. A., Fu F.-X., Zhang Y., Warner M. E., Feng Y., Portune K., Bernhardt P. W. & Mulholland M. R., 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography 52:1293-1304.
  • Palacios S. L. & Zimmerman R. C., 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series 344:1-13.

2006

  • Kikkawa T., Sato T., Kita J. & Ishimatsu A., 2006. Acute toxicity of temporally varying seawater CO2 conditions on juveniles of Japanese sillago (Sillago japonica). Marine Pollution Bulletin 52:621-625.

2004

  • Engel A., Delille B., Jacquet S., Riebesell U., Rochelle-Newall E., Terbrüggen A. & Zondervan I., 2004. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology 34:93-104.
  • Green M. A., Jones M. E., Boudreau C. L., Moore R. L. & Westman B. A., 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49:727-734.

2002

  • Invers O., Tomàs F., Pérez M. & Romero J., 2002. Potential effect of increased global CO2 availability on the depth distribution of the seagrass Posidonia Oceanica (L.) Delile: a tentative assessment using a carbon balance model. Bulletin of Marine Science 71:1191-1198.
  • Tortell P. D., DiTullio G. R., Sigman D. M. & Morel F. M. M., 2002. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series 236: 37-43.

2001

  • Broecker W. S., Langdon C. & Takahashi T., 2001. Factors controlling the rate of CaCO3 precipitation on Great Bahama Bank. Global Biogeochemical Cycles 15:589-596
  • Gervais F. & Riebesell, U., 2001. Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnology and Oceanography 46:497-504.
  • Marubini F., Barnett H., Langdon C. & Atkinson M. J., 2001. Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology Progress Series 220:153-162.

Before 2001

  • Nimer N. A. & Merrett M. J., 1993. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytologist 123:673-677.
  • Russell A. D. & Spero H. J., 2000. Field examination of the oceanic carbonate ion effect on stable isotopes in planktonic foraminifera. Paleoceanography 15:43-52.