

Trend Curves for IAEA Reference Steel JRQ

R.Kopriva, M.Brumovsky, M.Kytka

ÚJV Řež, a. s. Integrity and Technical Engineering Division

Degradation of Primary Components of Pressurised Water Cooled Nuclear Reactors IAEATechnical Meeting, 5-8 November 2013 Vienna, Austria

Outline

- Introduction
- Material description
- Material production
- Trend curves
 - Results at different irradiation temperatures
 - Results MTR vs. WWER/PWR
- Conclusions

- IAEA reference steel JRQ was prepared by Kawasaki Steel Corporation (Japan) as a sensitive material specially for the IAEA co-ordinated programme
 - CRP-3 "Optimizing Reactor Pressure Vessel Surveillance Programmes and Their Analysis"
- This steel has been used for several subsequent IAEA CRP programmes
- This steel is also used as a reference steel in several surveillance specimen programmes of reactor pressure vessels
- There exists sufficient stock of this material for future uses and purposes

- The steel was produced by the BOF-LRF (Basic oxygen furnace - Ladle refining furnace) process
 - 2 blocks with dimensions 2300 mm × 3400 mm × 340 mm
- After rolling, the plates were heat treated under the following conditions
 - normalised from 900 °C
 - quenched from 880 °C
 - tempered at 665 °C for 12 hours
 - stress relieved at 620 °C for 40 hours

Plates A and B after rolling

■ Dimensions – 3000 mm × 2000 mm × 250 mm

		Plate A		Plate B				
E	1JRQ	2JRQ	3JRQ	ШШ		7JRQ	8JRQ	9JRQ
2000	4 JRQ	5JRQ	6JRQ	2000	,	10 JRQ	11JRQ	12JRQ
				3000 mm				

Cutting to smaller blocks

■ Dimensions – 150 mm × 150 mm × 250 mm

xJRQ11	xJRQ12	xJRQ13	xJRQ14	xJRQ15	xJRQ16	
xJRQ21	xJRQ22	xJRQ23	xJRQ24	xJRQ25	xJRQ26	
xJRQ31	xJRQ32	xJRQ33	xJRQ34	xJRQ35	xJRQ36	
xJRQ41	xJRQ42	xJRQ43	xJRQ44	xJRQ45	xJRQ46	
xJRQ51	xJRQ52	xJRQ53	xJRQ54	xJRQ55	xJRQ56	150 mm
•						150

Material main characteristics

Chemical composition (mass %)

	Locat	ion	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Al
Ladle	-		0.18	0.24	1.42	0.017	0.004	0.14	0.84	0.12	0.51	0.002	0.014
	Тор	t/4	0.19	0.25	1.41	0.017	0.004	0.14	0.84	0.12	0.50	0.003	0.012
Plate A		2t/4	0.20	0.26	1.43	0.019	0.004	0.14	0.85	0.12	0.51	0.003	0.012
	Bottom	t/4 t	0.18	0.25	1.39	0.017	0.003	0.14	0.83	0.12	0.50	0.003	0.012
		2t/4 t	0.18	0.25	1.38	0.019	0.004	0.14	0.82	0.12	0.49	0.003	0.012
	Тор	t/4	0.19	0.25	1.39	0.019	0.004	0.14	0.83	0.12	0.50	0.003	0.012
Plate B		2t/4 t	0.20	0.25	1.41	0.019	0.004	0.14	0.84	0.12	0.50	0.003	0.012
	Bottom	t/4	0.18	0.25	1.37	0.018	0.004	0.13	0.82	0.12	0.49	0.003	0.012
		2t/4 t	0.16	0.25	1.35	0.019	0.003	0.13	0.80	0.12	0.49	0.003	0.012

T = plate thickness (225 mm)

Acceptance test results

Tensile test results (Plate A) – room temperature

Location		Yield Strength [MPa]	Tensile Strength [MPa]	Elongation [%]	Reduction of Area [%]
	0/4 t	564	688	26	82
Тор	1/4 t	487	635	25	77
	2/4 t	482	630	24	77
	0/4 t	548	678	27	81
Bottom	1/4 t	467	624	27	76
	2/4 t	465	611	27	77

Acceptance test results

Charpy impact test results (Plate A)

Orientation	Location		T ₄₁ J [°C]	T ₆₈ J [°C]	T _{50 %} [°C]	KV(-12 °C) [J]
		0/4 t	- 115	- 112	- 99	240
Longitudinal	Тор	1/4 t	- 28	- 15	2	75
		2/4 t	- 23	- 13	5	74
		0/4 t	- 53	- 46	- 36	176
Transverse	Тор	1/4 t	- 23	- 13	2	69
		2/4 t	19	- 8	8	60

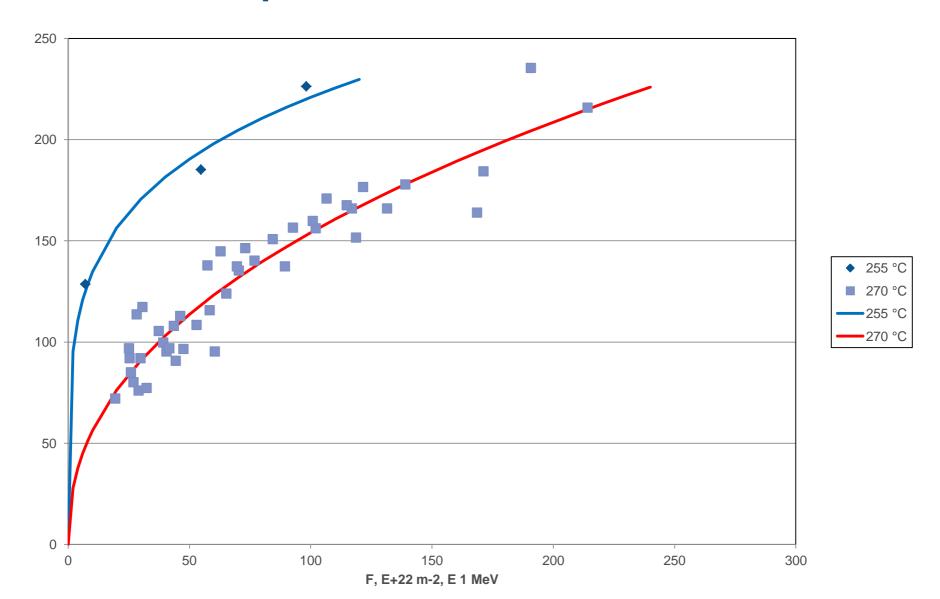
Steel characterization

 IAEA reference steel JRQ was proposed as a correlation monitor - material with medium sensitivity to radiation damage

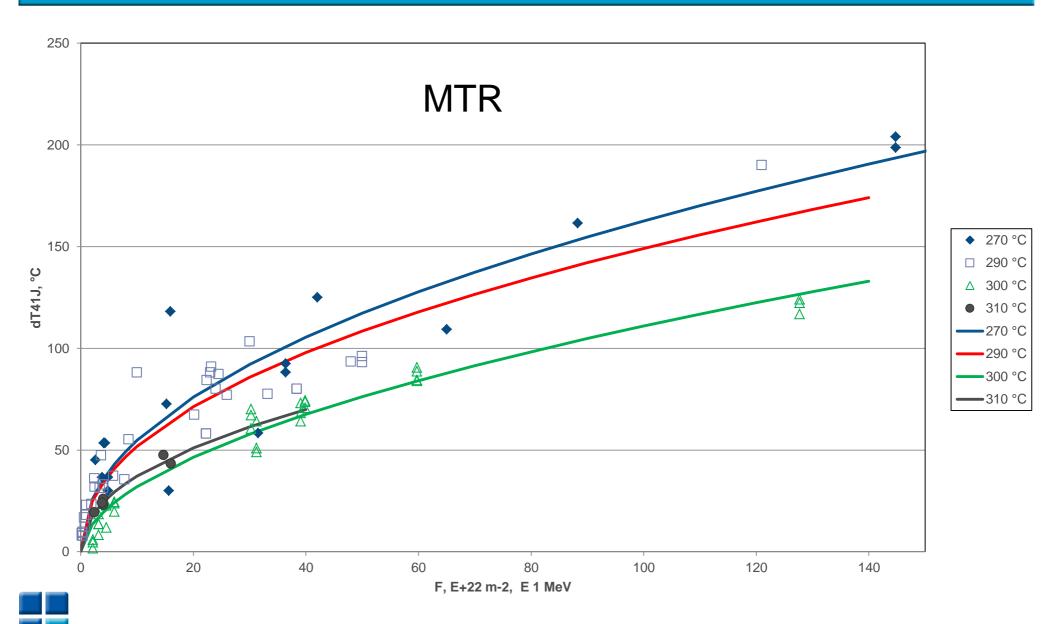
0.019 P + 0.14 Cu

- Specimens from middle half of the thickness are used
- Further information
 - IAEA-TECDOC-1230 "Reference manual on the IAEA JRQ correlation monitor steel for irradiation damage studies"

Irradiation conditions


- Irradiations were performed at different reactors
 - WWER-440/V-213 surveillance position
 - Irradiation temperature 270 °C
 - at different experimental reactors within several IAEA
 CRPs + experimental programmes RADAMO, IVAR etc.
 - Irradiation Temperatures 255, 270, 290, 300 and 310 °C
- Thus, comparison of irradiation at different temperatures in MTR and comparison of MTRs and WWER/PWR irradiations can be performed – flux effect

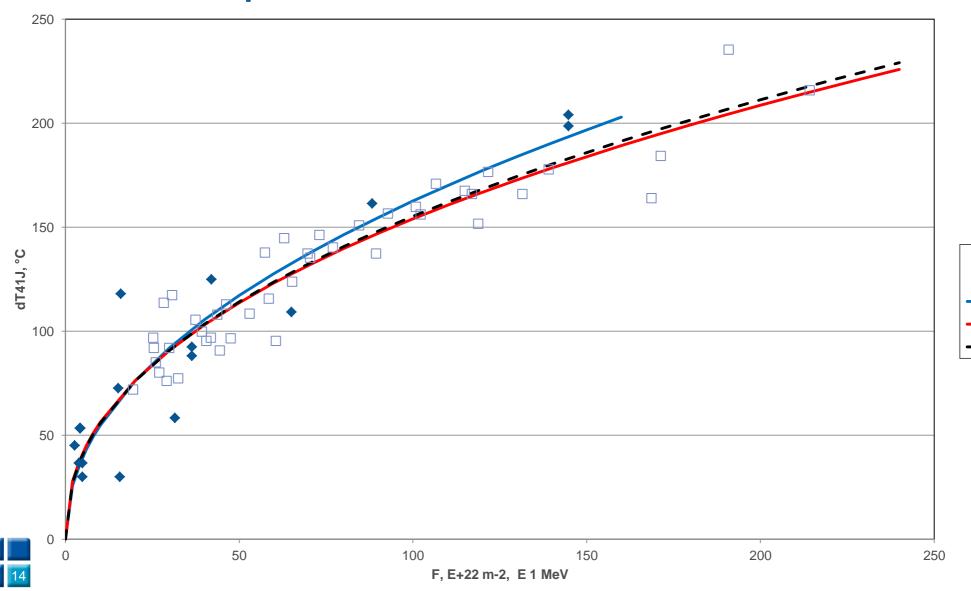
Comparison 255 °C vs. 270 °C


Irradiation were performed in WWER reactors

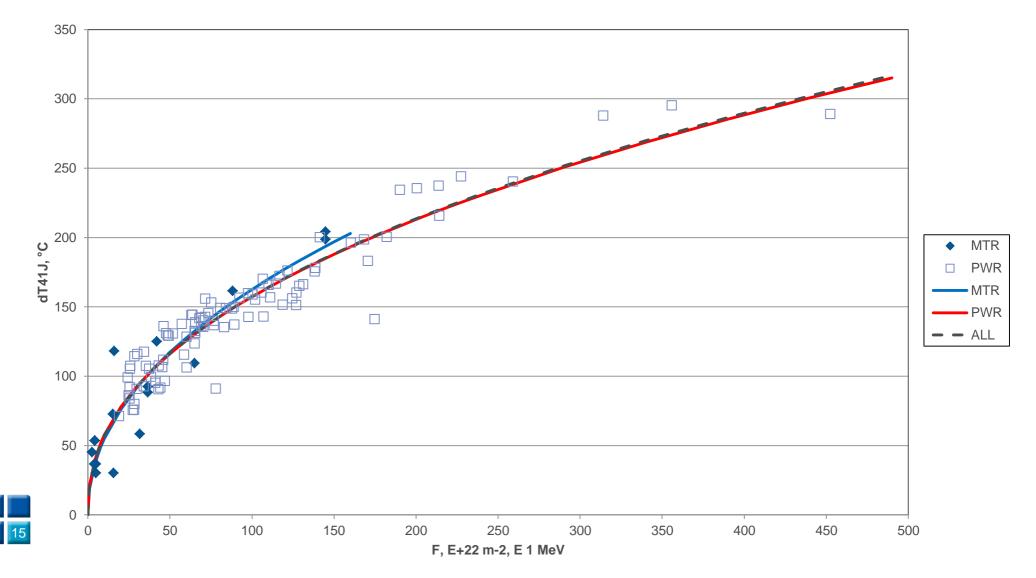
Comparison of irradiation tempeatures

Comparison of irradiation tempeatures

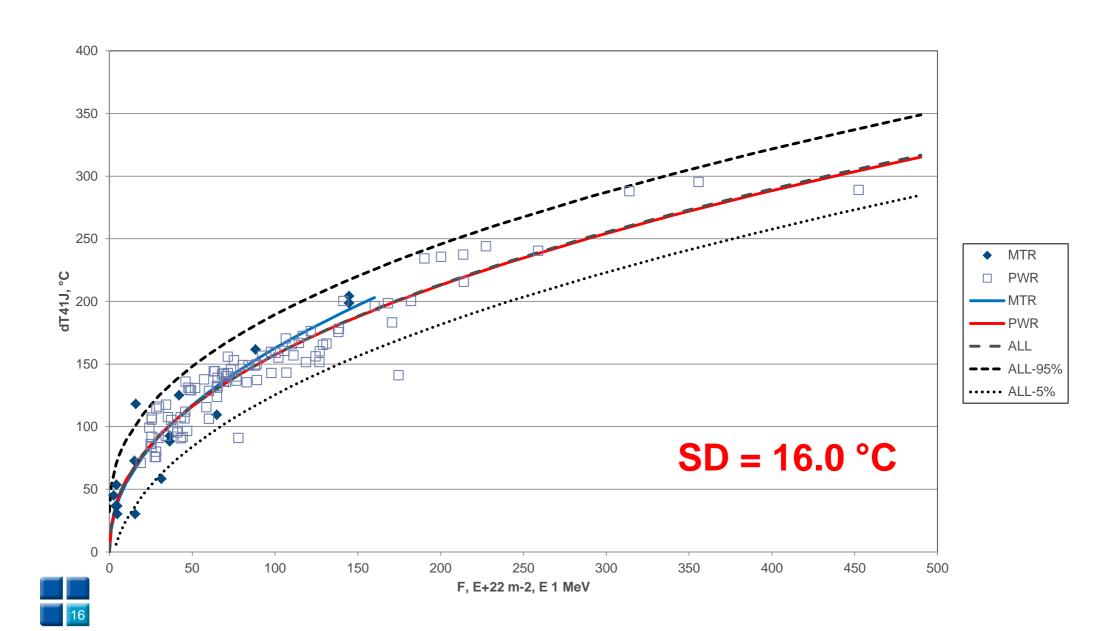
- Some scatter of data exists after irradiations at MTR
- Effect of irradiation temperature is clearly seen even for small differences in temperatures
- No saturation effect is seen even for high irradiation fluences



MTR
PWR
MTR
PWR


- ALL

■ Irradiation Temperature – 270 °C



- Irradiation temperature 270 °C
- Extended set of surveillance data

- Trend curves from irradiations at 270°C in MTR and WWER/PWR are practically identical in the whole fluence region
- Thus, practically no flux effect can be seen for this material and irradiation conditions – lead factor is approx. up to 100
- Exponent of power function in the trend curve is equal to n = 0.44

JRQ trend curves

$$\Delta T_{41J}$$
 (270°C) = 20.77

$$[F*10^{22}.m^{-2}, E > 1 MeV]$$

n=0.44

$$\Delta T_{41,J}$$
 (290°C) = 20.06

$$[F*10^{22}.m^{-2}, E > 1 MeV]$$

n=0.44

$$SD = 16.0$$
 °C

$$SD = 15.9 \, ^{\circ}C$$

- There is only a small effect of irradiation temperature
- There is no effect on exponent in trend curves

Conclusions

- Irradiation embrittlement of JRQ steel is characterized by transition temperature shift
- Irradiations were performed at different reactors
 - WWER-440/V-213 surveillance position
- Trend curves for these temperatures have been evaluated
 - Relatively small scatter of data (SD = 16.0 °C)
 - Does not show any tendency for saturation even at fluences over 2 × 10²⁴ m⁻² (E > 1 MeV)= 3.5 × 10²⁴ m⁻² (E > 0.5 MeV)
 - JRQ can be used as a reliable reference/ correlation monitor for irradiations at 270 °C as well as 290 °C up to these fluences (only transition temperature shift for higher fluences can be higher than the irradiation temperature itself)
 - No flux effect is seen in irradiation embrittlement of this JRQ steel
 - UJV Rez serves as a custodian for the JRQ material there is still enough for users

Thank you very much for your kind attention

