

International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13) Paris, France 4-7 March 2013

ACHIEVEMENT AND NEW CHALLENGES FOR HIGH PERFORMANCE MATERIALS IN EUROPE

C. Fazio

Karlsruhe Institute of Technology, KIT

Ph. Dubuisson

Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA

Outline

- Motivation:
 - the European approach for nuclear energy sustainability
 - Requirements driving materials selection
- Materials Options: three examples
- European Initiatives

The European approach for nuclear energy sustainability: ESNII

Introduce in the nuclear technology development more sustainability aspects as e.g.

- better use of resources;
- less waste;
- higher system efficiency;

All this while keeping very high safety standards

The European approach for nuclear energy sustainability: ESNII

Requirements driving materials selection

- fast neutron spectrum
- higher fuel burn-up
- higher temperature and temperature differences
- other coolants than water
- thermal and mechanical, static and cyclic stresses
- long-term operation
-
- <u>Safety</u>: materials integrity during normal operation and transient conditions: defence-in-depth (multibarrier concept)

Physical Barriers

To prevent uncontrolled release of radioactive materials to the environment:

- 1) fuel matrix + 2) cladding
- 3) the reactor coolant pressure boundary (vessel and primary system)
- 4) Steel liner + 5) containment

Material options: examples for three components

component	material	Innovation / innovative aspects
Fuel cladding	Reference: Austenitic steel (15Cr-15Ni-Ti stabilized)	 Alternative to the reference is the development of: Advanced Austenitic ODS F/M steel SiC_fSiC MAX Phases
Reactor Vessel and primary system	Austenitic Steel F/M Steel	Estimation of long operational time Welding of thick components
Steam Generator	F/M Steels	Introduce relevant F/M Steels data in Design code (e.g. RCC-MRx)
	Ni alloys	Assess optimal alloy composition to withstand high temperature requirements in GFR (and V/HTR)

Fuel Cladding: limits of austenitic steel

Fuel Cladding: Safety

stress to rupture strength of clad F/M vs. Austentic steels: can pose safety related limits on F/M steel

Hoop Stress

$$\sigma_{\theta} = \left(P_{i} - P_{0}\right) \frac{R}{W}$$

P_i = corresponding to fission gas plenum pressure

P₀ = corresponding to bulk coolant pressure at axial position

R = radius of cladding

w = cladding wall thickness

J.S. Cheon et al./Journal of Nuclear Materials 392 (2009) 324-330

Fuel Cladding Innovation: ODS – example of issues Anisotropy

Requirements

- Integrity and low deformation in service
- Good impact properties before and after irradiation
- Good internal and external corrosion resistance
- No insurmountable effect during the reprocessing of the fuel

ODS Issues

- definition of reference composition
- reproducibility
- Up-scale to industrial quantities
- Weldability
- Anisotropy
- Mechanical Performance under irradiation

Impact test results from CEA and CIEMAT on 14Cr ODS – Results from GETMAT project

Courtesy M. Serrano, CIEMAT 2012

•

Fuel Cladding Innovation: SiC_fSiC – examples of issues

Non linear response to Th-mechanical stresses depends from SiC_fSiC architecture, constituents,

SiC_fSiC shows Matrix cracking in the elastic domain

Tensile Test on a minicomposite [El Yagoubi 2011]

Source: M. Le Flem, CEA 2012

Reactor Vessel: AISI 316 LN (reference for LMFR)

Reactor vessel has to be operate in a negligible creep regime at the temperature considered

60-year design at high temperature (up to 550 °C)

Acquisition of material data:

- Long-term creep,
- long-term creep-fatigue,
- environmental effects (aging, corrosion, irradiation)

SG: proposed material 9Cr F/M steel

Advantage: good thermal properties

Issues to be solved: cyclic softening, ratcheting, creep-fatigue, ...

The efficiency diagram as in RCC-MRx (for other steel) is not applicable to T91

tension - torsion tests

O. Ancelet, T. Lebarbé, CEA MATTER Project, 2013

EU Initiatives: JP on Nuclear Materials

Joint Program on Nuclear Materials (JPNM) - Concetta Fazio, KIT

• Support to the European Sustainable Nuclear Industrial SP1 Initiative (ESNII) - Karl Fredrik Nilsson, JRC IET • Oxide Dispersed Strengthened (ODS) Steels SP2 Yann de Carlan, CEA • Refractory materials: ceramic composites and metal-based SP3

SP4

SP5

SP6

alloys - Marie-Francoise Maday, ENEA

• Modelling: Correlation, Simulation and Experimental Validation - Lorenzo Malerba, SCK-CEN

 Manufacturing, irradiation and qualification of advanced fuels - J. Somers, JRC ITU

 Modelling and separate effect experiments on fuels M. Bertolus, CEA

EU Initiatives: JPNM links

- **SNETP**: Participation to the definition of the European Strategic Research and Innovation Agenda
- **SET-Plan**: Being part of the European Energy Research Alliance (EERA) and contribution to the Materials for Energy road-map

• Euratom:

- GETMAT Project on ODS and modelling of Fe-Cr alloys (almost finished)
- MATTER Project (Coordinator P. Agostini, ENEA) on ESNII releavant structural materials

NEW*NEW* MatISSE (Coordinator C. Cabet, CEA) on clad material ODS and SiCSiC tubes as well fuel /clad interaction relevant for ESNII

Thank you for your attention