

## ASTRID

Advanced Sodium Technological Reactor for Industrial Demonstration





www.cea.fr
DEN/CAD/DER/CPA



# "Safety orientations during ASTRID conceptual design phase"

P. LO PINTO, R. DOUSSON, J.C. ROBIN (CEA)
B. CARLUEC, S. EHSTER-VIGNOUD, S. BEILS (AREVA)
P. MARITEAU, F. GIFFON (EDF)

IAEA-CN-199 - 267

Pierre Lo Pinto astrid@cea.fr





AREVA

### **CONTENTS**

#### 1. Introduction

- Presentation of the Safety Orientations Document (DOrS)
- Global safety objectives

### 2. Basic components of the safety orientations

- Specific risk diagram of ASTRID
- Implementation of design safety methods
- "Lines of Defense" and "Lines of Mitigation" methods

### 3. Implementation of safety orientations through the conceptual design

- To promote "natural behavior" of the plant
- New approach of core severe accident
- Decoupling between CDA study and "lines of Mitigation" design

### 4. Other notions contributing to robust safety demonstrations

- Safety demonstration for "practically eliminated" situations
- Progressiveness of the approach
- Example of progressiveness : "Subassembly fault" family

## 5. Concluding remarks on ASTRID safety orientations





### 1.1 INTRODUCTION

- The current phase of ASTRID project is devoted to the choice of the most structuring options for the conceptual design
- In order to integer earlier the safety concerns into the design project, a Safety Orientations Document (DOrS) was delivered in 2012 with a double purpose:
  - To define the need of assessment studies for selecting the design options from safety viewpoint,
  - To initiate the exchanges with the licensing authority before the selection of the most structuring design options
- This presentation gives some information on major safety orientations specific to the ASTRID project







### 1.2 GLOBAL SAFETY OBJECTIVES

## Consequences levels and probabilistic targets:

< 10<sup>-5</sup> /year

- Prevention of Severe Accident with core meltdown, including whole events and hazards
- Radiological releases not requiring off-site countermeasures

< 10<sup>-6</sup> /year

- Mitigation of Severe Accident
- Unacceptable radiological releases but consistent with off-site countermeasures i.e. postponed, limited in time and area

< 10<sup>-7</sup> /year  Prevention of massive or early radiological releases i.e. not consistent with efficient off-site countermeasures

Approach basically deterministic for a better safety implementation through the conceptual design



### 2.1 RISK DIAGRAM OF ASTRID

## A specific approach beyond the design basis domain:

- Definition of SP, SM and SPE domains and related analyses rules
  - Classification not based on frequency range but on level of degraded plant state
  - With the objective to class in "SP" prior to considering "SM" and at least "SPE"





### 2.2 IMPLEMENTATION OF SAFETY DESIGN METHODS

## To translate the safety principles into practical analyses tools → a good way to get "robust" safety demonstrations

In addition to the existing French regulatory fundamental safety rules, some examples:

- Method of « Lines of Defense » (from SFR feedback)
- New concept of « Line of Mitigation » method
- Type of demonstration for practical elimination of some situations (SPE)
- New definition of safety classes for important equipment (SSC)
- Appropriate methods for specific SFR events (ex. LBB implementation)
- Definition of « hard core » provisions (Fukushima feedback)





## 2.3 « LOD » & « LOM » METHODS

|                               | S.A. Prevention                                                   | S.A. Mitigation                                                                                  |
|-------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Method:                       | Lines of defense (LoD)                                            | Lines of Mitigation (LoM)                                                                        |
| Approach type:                | « Bottom-Up »                                                     | « Top-Down »                                                                                     |
| Objective :                   | Probabilistic targets                                             | Consequences reduction                                                                           |
| Lines validation criteria:    | Number of lines,<br>reliable, independent,<br>common mode absence | Equipment ensuring all functions of one LoM. Each LoM homogeneous: approach "weak link of chain" |
| Demonstration:                | Equivalent to "2 strong + 1 medium" lines                         | Minimization of radiological release with<br>'decoupling' approach                               |
| Application domain:           | Prevention including SPE                                          | Complementary to "analysis by barrier" method                                                    |
| Safety classification of SSC: | Complementary to<br>"analysis by function"                        | Complementary to "analysis by function"                                                          |
| « Hard Core » contents:       | One LoD per SPE                                                   | All equipment involved in one same LoM                                                           |



## **22** 3.1 TO PROMOTE "NATURAL BEHAVIOR" OF THE PLANT

Objective is not to substitute "natural behavior" for safety systems but to improve the safety level by additional diverse safety provisions:

- Enhanced "natural behavior" (i.e. unprotected transients) as a backup of the safety systems
- To complete the part brought by the "natural behavior" by complementary safety devices if needed (ex. CSD for achieving a final safe state)
- To promote favorable "natural behavior" both :
  - in SA prevention domain, as a third defense level
  - —in SA mitigation domain, in order to reduce the potential consequences and then to less attack the safety mitigating provisions
- Improvement of the "natural behavior" concerns all safety functions (reactivity mastery, DHR, confinement ...) against all type of initiating events families







## **CONTRACTION OF CORE SEVERE ACCIDENT**

CDA studies from different events families (initiating transients) with identification of :

- typical core degraded states shared by different scenarios (crosscut states)
- key parameters leading to a range of consequence results.



## Some features of the new approach:

- Taking account of SA despite high reliability of safety systems and "natural" behavior" contribution in prevention
- CDA studies not based on only one scenario but from different events families
- Objective of "non energetic" CDA by conceptual core design and CSD if needed
- Decoupling between CDA results and lines of mitigation design



## 22 3.3 DECOUPLING between CDA STUDY and 'LOM' DESIGN

## Approach adapted to get robust mitigation countermeasures :

- → « Top-Down » approach through the « Lines of Mitigation » method
- Implementation of the Defense-in-Depth level 4 (mitigation provisions) should prevent a 'common mode' fault into the approach; for this purpose it is recommended:
  - As regards the containment : the reactor should be designed so that any scenario of core degradation cannot lead to a high mechanical energy release. Nevertheless, components and structures required to mitigate CDA consequences, should be designed to withstand, as far as reasonably feasible, against a hypothetical mechanical energy release.
  - As regards the <u>confinement</u>: even if the source term mobilized by a SA scenario involving core meltdown might be limited, the design provisions related to the confinement function should be optimized as far as reasonably feasible.







### 4.1 SAFETY DEMONSTRATION FOR "SPE"

To use a safety demonstration method suitable for "practical elimination" of some situations (SPE)

- Situations that could lead to a massive or quick radiological off-site release (i.e. not manageable by countermeasures)
- SPE stemming from possible « cliff edge » effect on consequences or from SA scenario without possible efficient mitigation provisions



Deterministic approach completed by probabilistic insight:
 at least equivalent to 3 lines of defense with "common mode" resistance and high confidence level



### 4.2 PROGRESSIVENESS OF THE APPROACH

## Progressive escalation by events family

- « DB »
- Slow or fast LOF
- Slow or fast TOP
- SAF
- « SP »
- DB initiators with additional failures including safety systems (Uxxx)
- Initiators more severe than DB initiators (ex. postulated fuel assembly melting)

- « SM »
- S.A. scenario from SP by additional aggravating hypothesis per family
- Generic approach not connected to a reference scenario to be justified

- « SPE »
- Safety demonstration based on robust prevention provisions (3 LoD)
- As for situations in continuation of SP, the mitigation measures (SM) could have favorable effects

- RR
- High energetic Severe Accident
- Massive or early radiological off-site release



## **C22** 4.3 EXAMPLE OF PROGRESSIVENESS: "SAF" FAMILY

## SAF family: a new strategy as regards the postulated « fuel assembly meltdown »

- Previous SFR approach (TIB)
  - "Total & Instantaneous Blockage" scenario with detection and protection
    - -No other case of local fuel melting considered except for an unprotected control rod withdrawal (CRW)
- New approach for ASTRID
  - Progressiveness considering various events from a « partial fuel assembly blockage » without melting towards the « global core meltdown » situation :
    - Exhaustive sensitivity study on efficient detection-protection means
    - Knowledge and understanding of physical evolution of different cases of fuel assembly blockage (size and delay)
    - Tacking account of global core meltdown (SM) from the SAF family with the same joint objective: "no energetic" CDA







### 5. CONCLUDING REMARKS ON SAFETY ORIENTATIONS

In comparison with previous SFR, safety improvement is expected through the conceptual design by implementation of ASTRID safety orientations. Some of them are:

- Appropriate treatment of local faults (detection, progressiveness ...)
- Approach by events family for both prevention and mitigation of SA
- Enhanced inherent plant behavior as a third prevention level of SA
- Generic approach of CDA considering : all types of initiating transients, typical degraded core states, key parameters leading to a range of results
- New concept of "lines of mitigation" method (LoM)
- Decoupling between CDA results and design of SA mitigation provisions facing:
  - —Hypothetical mechanical energy release,
  - —Potential radiological source term.
- Rational demonstration of practically eliminated situations (SPE)
- Integration of Fukushima lessons through hazards concerns beyond the Design Basis, including the "hard core" notion (see dedicated presentation during FR13).





Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul lez Durance Cedex T. +33 (0)4 42 25 32 54 | F. +33 (0)4 42 25 20 13 DEN

DER

CPA (astrid@cea.fr)