1. Skip to navigation
  2. Skip to content
  3. Skip to secondary content
  4. Skip to sidebar

Navigation







Abed El Rahman HASSOUN (Lebanon), SOLAS Summer School 2013

"OA-ICC [...] provided for me the opportunity to present my research work to the international ocean research community, to meet experts and colleagues from all over the world and discuss with them about my results, share ideas and build a strong network with peers for future scientific collaborations."

List of data sets not included in the compilation


Some papers describe data sets which are relevant but could not be added to the OA-ICC compilation for various reasons: (1) data could not be obtained from the authors, (2) data were lost, or (3) less than two carbonate system parameters were measured.

Data that could not be obtained from the authors

  • Albright R., Bland C., Gillette P., Serafy J. E., Langdon C. & Capo T. R., 2012. Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios. Journal of Experimental Marine Biology and Ecology 426-427: 12-17.
  • Albright R. & Langdon C., in press. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biology doi:10.1111/j.1365-2486.2011.02404.x
  • Albright R. & Mason B., 2013. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8(2): e56468. doi:10.1371/journal.pone.0056468.
  • Anthony K. R. N., Diaz-Pulido G., Verlinden N., Tilbrook B. & Andersson A. J., 2013. Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10: 4897-4909.
  • Ardelan M. V. Sundeng K., Slindea G. A., Gjøsund N. S., Nordtug T., Olsen A. J., Steinnes E. & Torp T. A., 2012. Impacts of possible CO2 seepage from sub-seabed storage on trace elements mobility and bacterial distribution at sediment-water interface. Energy Procedia 23: 449-461.
  • Arnberg M., Calosi P., Spicer J. I., Tandberg A. H. S., Nilsen M., Westerlund S. & Bechmann R. K., 2013. Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of northern shrimp (Pandalus borealis) larvae. Marine Biology 160(8), 2037-2048.
  • Arnold K. E., Findlay H. S., Spicer J. I., Daniels C. L. & Boothroyd D., 2009. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosciences 6:1747-1754.
  • Arnold H. E., Kerrison P. & Steinke M., 2013. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Global Change Biology 19(4): 1007-1016.
  • Arnosti C., Grossart H. P., Mühling M., Joint I. & Passow U., 2011. Dynamics of extracellular enzyme activities in seawater under changed atmospheric pCO2: a mesocosm investigation. Aquatic Microbial Ecology 64(3):285-298
  • Barros P., Sobral P., Range P., Chícharo L. & Matias D., 2013. Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. Journal of Experimental Marine Biology and Ecology 440: 200–206.
  • Berge T., Daugbjerg N. & Hansen P. J., 2012. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae 20: 101-110.
  • Berge T., Gaugbjerg N., Balling Andersen B. &  Hansen P. J., 2010. Effect of lowered pH on marine phytoplankton growth rates. Marine Ecology Progress Series 416:79-91
  • Bignamia S., Enochs I. C., Manzello D. P., Sponaugle S. & Cowen R. K., 2013. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. Proceedings of the National Academy of Sciences of the United States of America 110(18): 7366-7370.
  • Bignami S., Sponaugle S. & Cowen R. K., 2013. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Global Change Biology 19(4): 996-1006.
  • Bradassi F., Cumani F., Bressan G. & Dupont S., 2013. Early reproductive stages in the crustose coralline alga Phymatolithon lenormandii are strongly affected by mild ocean acidification. Marine Biology 160(8): 2261-2269.
  • Broecker W. S., Langdon C. & Takahashi T., 2001. Factors controlling the rate of CaCO3 precipitation on Great Bahama Bank. Global Biogeochemical Cycles 15:589-596
  • Burdett H. L., Carruthers M., Donohue P. J. C., Wicks L. C., Hennige L. S., Roberts J. M. & Kamenos N. A., 2014. Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Marine Biology 161(7): 1499-1506.
  • Burnell O. W., Russell B. D., Irving A. D. & Connell S. D., 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Marine Ecology Progress Series 485: 37-46.
  • Byrne M., Ho M., Selvakumaraswamy P., Nguyen H. D., Dworjanyn S. A. & Davis A. R., 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of The Royal Society 276:1883-1888.
  • Byrne M., Gonzalez-Bernat M., Doo S., Foo S., Soars N. & Lamare M., 2013. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Marine Ecology Progress Series 473:235-246
  • Byrne M., Ho M. A., Koleits L., Price C., King C. K., Virtue P., Tilbrook B. & Lamare M., 2013. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Global Change Biology 19(7): 2264-2275.
  • Byrne M., Ho M., Wong E., Soars N. A., Selvakumaraswamy P., Shepard-Brennand H., Dworjanyn S. A. & Davis A. R., 2011. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proceedings of the Royal Society of London. Series B: Biological Sciences doi:10.1098/rspb.2010.2404.
  • Byrne M., Soars N., Ho M., Wong E., McElroy D., Selvakumaraswamy P., Dworjanyn S.&  Davis A., 2010. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology 157(9):2061-2069
  • Byrne M., Soars N., Selvakumaraswamy P., Dworjanyn S. A. & Davis A., R., 2010. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research 69:234-239.
  • Calosi P., Rastrick S. P. S., Graziano M., Thomas S. C., Baggini C., Carter H. A., Hall-Spencer J. M., Milazzo M. & Spicer J. I., 2013. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Marine Pollution Bulletin 73(2): 470-484.
  • Calosi P., Turner L. M., Hawkins M., Bertolini C., Nightingale G., Truebano M. & Spicer J. I., 2013. Multiple physiological responses to multiple environmental challenges: an individual approach. Integrative and Comparative Biology 53(4): 660-670.
  • Catarino A. I., De Ridder C., Gonzalez M., Gallardo M.&  Dubois P., in press. Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biology doi:10.1007/s00300-011-1074-2
  • Cerrano C., Cardini U., Bianchelli S., Corinaldesi C., Pusceddu A. & Danovaro R., 2013. Red coral extinction risk enhanced by ocean acidification. Scientific Reports 3: 1457. doi:10.1038/srep01457.
  • Chivers D. P., McCormick M. I., Nilsson G. E., Munday P. L., Watson S.-A., Meekan M. G., Mitchell M. D., Corkill K. C. & Ferrari M. C. O., 2014. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biology 20(2): 515-522.
  • Christensen A. B., Nguyen H. D. & Byrne M., in press. Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: Inferences for survivorship in a changing ocean. Journal of Experimental Marine Biology and Ecology doi:10.1016/j.jembe.2011.04.002
  • Chua C. M., Leggat W., Moya A. & Baird A. H., 2013. Near-future reductions in pH will have no consistent ecological effects on the early life-history stages of reef corals. Marine Ecology Progress Series 486: 143-151.
  • Chua C. M., Leggat W., Moya A. & Baird A. H., 2013. Temperature affects the early life history stages of corals more than near future ocean acidification. Marine Ecology Progress Series 475: 85-92.
  • Cohen A. L., McCorkle D. C., de Putron S., Gaetani G. A. & Rose K. A., 2009. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochemistry Geophysics Geosystems 10(7): Q07005.
  • Cummings V., Hewitt J., Van Rooyen A., Currie K., Beard S., Thrush S., Norkko J., Barr N., Heath P., Halliday N. J., Sedcole R., Gomez A., McGraw C. & Metcalf V., 2011. Ocean acidification at high latitudes: Potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6(1): e16069
  • Davis A. R., Coleman D., Broad A., Byrne M., Dworjanyn S. A. & Przeslawski R., 2013. Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8(2): e55939. doi:10.1371/journal.pone.0055939
  • De Bodt C., Harlay, J. & Chou, L, 2008. Biocalcification by Emiliania huxleyi in batch culture experiments. Mineralogical Magazine 72:251-256.
  • de la Haye K. L., Spicer J. I., Widdicombe S.&  Briffa M., in press. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Animal Behaviour doi:10.1016/j.anbehav.2011.05.030
  • Devine B. M., Munday P. L. & Jones G. P., in press. Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs doi:10.1007/s00338-011-0837-0
  • Dissanayake A. & Ishimatsu A., 2011. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES Journal of Marine Science 68(6):1147-1154
  • Dissanayake A., Clough R., Spicer J. I. & Jones M. B., 2010. Effects of hypercapnia on acid-base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquatic Biology 11:27-36.
  • Donohue P., Calosi P., Bates A. H., Laverock B., Rastrick S., Mark F. C., Strobel A. & Widdicombe S., 2012. Impact of exposure to elevated pCO2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura. Aquatic Biology 15(1):73-86.
  • Duarte C., Navarro J. M., Acuña K., Torres R., Manríquez P. H., Lardies M. A., Vargas C. A., Lagos N. A. & Aguilera V., 2014. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research 85: 308–314.
  • Dupont S. & Thorndyke M., 2012. Relationship between CO2-driven changes in extracellular acid–base balance and cellular immune response in two polar echinoderm species. Journal of Experimental Marine Biology and Ecology 424-425: 32-37.
  • Egilsdottir H., Spicer J. I. & Rundle, S. D., 2009. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Marine Pollution BulletinM 56:1187-1191.
  • Eklöf J. S., Alsterberg C., Havenhand J. N., Sundbäck K., Wood H. L. & Gamfeldt L., 2012. Experimental climate change weakens the insurance effect of biodiversity. Ecology Letters 15(8): 864–872.
  • Engel A., Delille B., Jacquet S., Riebesell U., Rochelle-Newall E., Terbrüggen A. & Zondervan I., 2004. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology 34:93-104.
  • Enzor L. A., Zippay M. L. & Place S. P., 2013. High latitude fish in a high CO2world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164(1): 154-161. doi: 10.1016/j.cbpa.2012.07.016.
  • Ericson J. A., Ho M. A., Miskelly A., King C. K., Virtue P., Tilbrook B. & Byrne M., 2012. Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biology 35(7): 1027-1034. doi: 10.1007/s00300-011-1150-7.
  • Ericson J. A., Lamare M. D., Morley S. A. & Barker M. F., 2010. The response of two ecologically important Antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Marine Biology 157(12):2689-2702
  • Esbaugh A. J., Heuer R. & Grosell M., 2012. Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus betaJournal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 182(7): 921-934. doi: 10.1007/s00360-012-0668-5.
  • Esbaugh A. J., Mager E. M., Brix K. V., Santore R. & Grosell M., 2013. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal. Aquatic Toxicology 130: 27-30.
  • Falkenberg L. J., Connell S. D. & Russell B. D., 2013. Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat. Journal of Applied Ecology 50(1): 51-58.
  • Falkenberg L. D., Russell B. D. & Connell S. D., 2013. Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172(2): 575-583.
  • Falter J. L., Lowe R. J., Atkinson M. J. & Cuet P., 2012. Seasonal coupling and de-coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia. Journal of Geophysical Research 117: C05003. doi:10.1029/2011JC007268.
  • Fang J. K. H., Mello-Athayde M. A., Schönberg C. H. L., Kline D. I., Hoegh-Guldberg O. & Dove S., 2013. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biology 19(12): 3581-3591.
  • Feng Y., Warner M. E., Zhan Y., Sun J., Fu F., Rose J. M. & Hutchins D. A., 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43:87-98.
  • Ferrari M. C. O., Dixon D. L., Munday P. L., McCormick M. I., Meekan M. G., Sih A.&  Chivers D. P., 2011. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Global Change Biology doi: 10.1111/j.1365-2486.2011.02439.x
  • Findlay H. S., Kendall M. A., Spicer J. I. & Widdicombe S., 2009. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Marine Ecology Progress Series 389:193-202
  • Findlay H. S., Kendall M. A., Spicer J. I., Turley C. & Widdicombe S., 2008. Novel microcosm system for investigating the effects of elevated carbon dioxide and temperature on intertidal organisms. Aquatic Biology 3: 51-62.
  • Fraile-Nuez E., González-Dávila M., Santana-Casiano J. M., Arístegui J., Alonso-González I. J., Hernández-León S., Blanco M. J., Rodríguez-Santana A., Hernández-Guerra A., Gelado-Caballero M. D., Eugenio F., Marcello J., de Armas D., Domínguez-Yanes J. F., Montero M. F., Laetsch D. R., Vélez-Belchí P., Ramos A., Ariza A. V., Comas-Rodríguez I. & Benítez-Barrios V. M., 2012. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response. Scientific Reports 2: 486. doi:10.1038/srep00486
  • Fu F. X., Place A. R., Garcia N. S. & Hutchins D. A., 2010. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquatic Microbial Ecology 59(1):55-65.
  • Fu F.-X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P. W., Warner, M. E., Sañudo-Wilhelmy, S. A. & Hutchins, D. A., 2008. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnology and Oceanography 53:2472-2484.
  • Fu F.-X., Warner M., E., Zhang Y., Feng Y. & Hutchins D., A., 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43:485-496.
  • Fujita K., Hikami M., Suzuki A., Kuroyanagi A., Sakai K., Kawahata H.& Nojiri Y., 2011. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8(8):2089-2098
  • Gabay Y., Benayahu Y. & Fine, M., 2013. Does elevated pCO2 affect reef octocorals? Ecology and Evolution 3(3): 465-473.
  • Gagnon A. C., Adkins J. F., Erez J., Eiler J. M. & Guan Y., 2013. Sr/Ca sensitivity to aragonite saturation state in cultured subsamples from a single colony of coral: mechanism of biomineralization during ocean acidification. Geochimica et Cosmochimica Acta 105:240-254.
  • Gaylord B., Hill T. M., Sanford E., Lenz E. A., Jacobs L. A., Sato K. N., Russell A. D.&  Hettinger A., 2011. Functional impacts of ocean acidification in an ecologically critical foundation species. The Journal of Experimental Biology 214(15):2586-2594
  • Gervais F. & Riebesell, U., 2001. Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnology and Oceanography 46:497-504.
  • Gobler C. J. & Talmage S. C., 2013. Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences 10: 2241-2253.
  • Gonzalez-Bernat M. J., Lamare M. & Barker M., 2013. Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Biology 36(2): 235-247.
  •  
  • Gonzalez-Bernat M. J., Lamare M., Uthicke S. & Byrne M., 2013. Fertilisation, embryogenesis and larval development in the tropical intertidal sand dollarArachnoides placenta in response to reduced seawater pH. Marine Biology 160(8): 1927-1941. doi: 10.1007/s00227-012-2034-2.
  • Gooding R. A., Harley C. D. G. & Tang E., 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 1-6
  • Green M. A., Jones M. E., Boudreau C. L., Moore R. L. & Westman B. A., 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49:727-734.
  • Green M. A., Waldbusser G. G., Hubazc L., Cathcart E. & Hall J., 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries and Coasts 36(1): 18-27. doi: 10.1007/s12237-012-9549-0.
  • Green M. A., Waldbusser G. G., Reilly S. L., Emerson K. & O'Donnell S., 2009. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography 54:1048-1059.
  • Hammer K. M., Kristiansen E. & Zachariassen K. E., in press. Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). Marine Environmental Research. doi:10.1016/j.marenvres.2011.07.002
  • Hammer K. M., Pedersen S. A. & Størseth T. R., 2012. Elevated seawater levels of CO2 change the metabolic fingerprint of tissues and hemolymph from the green shore crab Carcinus maenas. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7(3): 292-302. doi: 10.1016/j.cbd.2012.06.001.
  • Hammond L. M. & Hofmann G. E., 2012. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO2 seawater conditions. Journal of Experimental Biology 215: 2445-2454.
  • Hernroth B. H., Nilsson Sköld H., Wiklander K., Jutfelt F. & Baden S., 2012. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus. Fish & Shellfish Immunology 33(5): 1095-1101.
  • Hettinger A., Sanford E., Hill T. M., Lenz E. A., Russell A. D. & Gaylord B., 2013. Larval carry-over effects from ocean acidification persist in the natural environment. Global Change Biology 19(11): 3317-3326.
  • Hettinger A., Sanford E., Hill T. M., Russell A. D., Sato K. N. S., Hoey J., Forsch M., Page H. N. & Gaylord B., 2012. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93(12), 2758-2768. doi: 10.1890/12-0567.1
  • Heuer R. M., Esbaugh A. J. & Grosell M., 2012. Ocean acidification leads to counterproductive intestinal base loss in the Gulf toadfish (Opsanus beta).Physiological and Biochemical Zoology 85(5): 450-459.
  • Hoogstraten A., Peters M., Timmermans K. R. & de Baar, H. J. W., 2012. Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae)Biogeosciences 9:1885-1896.
  • Hutchins D. A., Fu F.-X., Zhang Y., Warner M. E., Feng Y., Portune K., Bernhardt P. W. & Mulholland M. R., 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography 52:1293-1304.
  • Invers O., Tomàs F., Pérez M. & Romero J., 2002. Potential effect of increased global CO2 availability on the depth distribution of the seagrass Posidonia Oceanica (L.) Delile: a tentative assessment using a carbon balance model. Bulletin of Marine Science 71:1191-1198.
  • Ishida H., Golmen L. G., West J., Krüger M., Coombs P., Berge J. A., Fukuhara T., Magi M. & Kita J., 2013. Effects of CO2 on benthic biota: an in situ benthic chamber experiment in Storfjorden (Norway). Marine Pollution Bulletin 73(2): 443-451.
  • Ivanina A. V., Beniash E., Etzkorn M., Meyers T. B., Ringwood A. H. & Sokolova I. M., 2013. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria. Aquatic Toxicology 140: 123-133.
  • Ivanina A. V., Dickinson G. H., Matoo O. B., Bagwe R., Dickinson A., Beniash E. & Sokolova I. M., 2013. Interactive effects of elevated temperature and co2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 166 (1): 101-111.
  • Jansson A., Norkko J. & Norkko A., 2013. Effects of reduced pH on Macoma balthica larvae from a system with naturally fluctuating pH-dynamics. PLoS ONE 8(6): e68198. doi: 10.1371/journal.pone.0068198.
  • Jiang Z. J., Huang X.-P. & Zhang J.-P., 2010. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. Journal of Integrative Plant Biology 52(10):904-9013.
  • Jutfelt F., Bresolin de Souza K., Vuylsteke A. & Sturve J., 2013. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8(6): e65825. doi:10.1371/journal.pone.0065825.
  • Kadar E., Simmance F., Martin O., Voulvoulis N., Widdicombe S., Mitov S., Lead J. R. &  Readman J. W., 2010. The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification. Environmental Pollution 158(12):3490-3497.
  • Kawaguchi S., Kurihara H., King R., Hale L., Berli T., Robinson J. P., Ishida A., Wakita M., Virtue P., Nicol S. & Ishimatsu A., in press. Will krill fare well under Southern Ocean acidification? Biology Letters doi: 10.1098/rsbl.2010.0777
  • Kikkawa T., Sato T., Kita J. & Ishimatsu A., 2006. Acute toxicity of temporally varying seawater CO2 conditions on juveniles of Japanese sillago (Sillago japonica). Marine Pollution Bulletin 52:621-625.
  • Kim J.-M., Lee K., Yang E. J., Shin K., Noh J. H., Park K., Hyun B., Jeong H.-J., Kim J.-H., Kim, K. Y., Kim M., Kim, H.-C., Jang P.-G. & Jang M.-C., 2010. Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environmental Science & Technology 44: 8140-8143
  • Kimura R. , Takami H., Ono T., Onitsuka T. &  Nojiri Y., in press. Effects of elevated pCO2 on the early development of the commercially important gastropod, Ezo abalone Haliotis discus hannai doi:10.1111/j.1365-2419.2011.00589.x
  • King A. L., Sañudo-Wilhelmy S. A., Leblanc K., Hutchins D. A. &  Fu F., 2011. CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom. Multidisciplinary Journal of Microbial Ecology 5:1388-1396
  • Kranz, S. A., Levitan, O., Richter, K.-U., Pràsil, O., Berman-Frank, I. & Rost, B., 2010. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: Physiological responses. Plant Physiology 154:334-345
  • Kroeker K. J., Micheli F. & Gambi M. C., 2012. Ocean acidification causes ecosystem shifts via altered competitive interactions.  Nature Climate Change 3(2): 156-159. doi:10.1038/nclimate1680
  • Kroeker K. J., Gambi M. C. & Micheli F., 2013. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proceedings of the National Academy of Sciences of the USA 110(31): 12721-12726.
  • Kurihara H., 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373:275-284.
  • Kurihara H., Matsui M., Furukawa H., Hayashi M. & Ishimatsu A., 2008. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. Journal of Experimental Marine Biology and Ecology 367
  • Kurihara H., Takano Y., Kurokawa D. & Akasaka K., 2012. Ocean acidification reduces biomineralization-related gene expression in the sea urchin,Hemicentrotus pulcherrimus. Marine Biology 159(12): 2819-2826. doi: 10.1007/s00227-012-2043-1
  • Lee P. A., Rudisill J. R., Neeley A. R., Maucher J. M., Hutchins D. A., Feng Y., Hare C. E., Leblanc K., Rose J. M., Wilhelm S. W., Rowe J. M. & DiTullio G. R., 2009. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate. Marine Ecology Progress Series 388: 41-49
  • Lefebvre S. C., Harris G., Webster R., Leonardos N., Geider R. J., Raines C. A., Read B. A. & Garrido J. L., 2010. Characterization and expression analysis of the Lhcf gene family in Emiliania huxleyi (Haptophyta) reveals differential responses to light and CO2. Journal of Phycology 46(1):123-134
  • Levitan O., Kranz S. A., Spungin D., Pràsil O., Rost B. & Berman-Frank I., 2010. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: A mechanistic view. Plant Physiology 154:346-356
  • Lewis C., Clemow K. & Holt W. V., 2013. Metal contamination increases the sensitivity of larvae but not gametes to ocean acidification in the polychaetePomatoceros lamarckii (Quatrefages). Marine Biology 160(8): 2089-2101.
  • Lomas M. W., Hopkinson B. M., Losh J. L., Ryan D. E., Shi D. L., Xu Y. & Morel F. M. M., 2012. Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquatic Microbial Ecology 66:211-222.
  • Long W. C., Swiney K. M. & Foy R. J., 2013. Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus. Marine Pollution Bulletin 69(1): 38-47.
  • Long W. C., Swiney K. M., Harris C., Page H. N. & Foy R. J., 2013. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus) and tanner crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS ONE 8(4): e60959. doi:10.1371/journal.pone.0060959.
  • Losh J. L., Morel F. M. M. & Hopkinson B. M., 2012. Modest increase in the C:N ratio of N-limited phytoplankton in the California Current in response to high CO2. Marine Ecology Progress Series 468: 31-42.
  • Manríquez P. H., Jara M. E., Mardones M. L., Navarro J. M., Torres R., Lardies M. A., Vargas C. A., Duarte C., Widdicombe S., Salisbury J. & Lagos N. A., 2013. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS ONE 8(7): e68643. doi:10.1371/journal.pone.0068643
  • Marshall D. J., Santos J. H., Leung K. M. Y. & Chak W. H., 2008. Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Marine Environmental Research
  • Marubini F., Barnett H., Langdon C. & Atkinson M. J., 2001. Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology Progress Series 220:153-162.
  • Mass T., Drake J. L., Haramaty L., Kim J. D., Zelzion E., Bhattacharya D. & Falkowski P. G., 2013. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Current Biology 23(12): 1126-1131.
  • Matoo O. B., Ivanina A. V., Ullstad C., Beniash E. & Sokolova I. M., 2013. Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164(4): 545-553.
  • McIntyre-Wressnig A., Bernhard J. M., McCorkle D. C. & Hallock P., 2013. Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Marine Ecology Progress Series 472: 45-60.
  • Meakin N. G. & Wyman M., 2011. Rapid shifts in picoeukaryote community structure in response to ocean acidification. The International Society for Microbial Ecology Journal 5:1397-1405
  • Medina-Rosas P., Szmant A. M. & Whitehead R. F., 2013. CO2 enrichment and reduced seawater pH had no effect on the embryonic development of Acropora palmata (Anthozoa, Scleractinia). Invertebrate Reproduction & Development 57(2) 132-141. doi: 10.1080/07924259.2012.704407.
  • Miller A. W., Reynolds A. C., Sobrino C. & Riedel G. F., 2009. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661.
  • Moheimani N. R. & Borowitzka M. A., 2011. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Applied Microbiology and Biotechnology 90(4):1399-1407
  • Moyer R. P., Viehman T. S., Piniak G. A. & Gledhill D. K., 2012. Linking seasonal changes in benthic community structure to seawater chemistry. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012. 8D Effects of ocean acidification. 5 pp.
  • Muehllehner N. & Edmunds P. J., 2009. Effects of ocean acidification and increased temperature on skeletal growth of two scleractinian corals, Pocillopora meandrina and Porites rus. Proceedings of the 11th International Coral Reef Symposium
  • Munguia P. & Alenius B., 2013. The role of preconditioning in ocean acidification experiments: a test with the intertidal isopod Paradella dianae. Marine and Freshwater Behaviour and Physiology 46(1): 33-44.
  • Murray F., Widdicombe S., McNeill C. L. & Solan M., 2013. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions. Marine Pollution Bulletin 73(2): 435-442.
  • Nakamura M. & Morita M., 2012. Sperm motility of the scleractinian coralAcropora digitifera under preindustrial, current, and predicted ocean acidification regimes. Aquatic Biology 15:299-302.
  • Nakamura M., Ohki S., Suzuki A. &  Sakai K., 2011. Coral larvae under ocean acidification: Survival, metabolism, and metamorphosis. PLoS ONE 6(1): e14521
  • Navarro J. M., Torres R., Acuña K., Duarte C., Manriquez P. H., Lardies M., Lagos N. A., Vargas C. & Aguilera V., 2012. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90(3): 1242-1248.
  • Newbold L. K., Oliver A. E., Booth T., Tiwari B., DeSantis T., Maguire M., Andersen G., van der Gast C. J. & Whiteley A. S., 2012. The response of marine picoplankton to ocean acidification. Environmental Microbiology 14(9), 2293-2307.
  • Niehoff B., Schmithüsen T., Knüppel N., Daase M., Czerny J. & Boxhammer T., 2013. Mesozooplankton community development at elevated CO2concentrations: results from a mesocosm experiment in an Arctic fjord. Biogeosciences 10: 1391-1406.
  • Nielsen L. T., Jakobsen H. H. &  Hansen P. J., 2010. High resilience of two coastal plankton communities to twenty-first century seawater  acidification: Evidence from microcosm studies. Marine Biology Research 6(6): 542-555
  • Nimer N. A. & Merrett M. J., 1993. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytologist 123:673-677.
  • Noonan S. H. C., Fabricius K. E. & Humphrey C., 2013. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE 8(5): e63985.
  • O’Donnell M. J., George M. N. & Carrington E., 2013. Mussel byssus attachment weakened by ocean acidification. Nature Climate Change 3: 587–590.
  • O’Donnell M. J., Todgham A. E., Sewell M. A., Hammond L. M., Ruggiero K., Fangue N. A., Zippay M. L. & Hofmann G. E., 2010. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series 398:157-171
  • Ohde S. & Tanaka K., 2009. Anthropogenic surface ocean acidification with increasing atmospheric carbon dioxide and its impact on coral calcification. In: Davin T. B. & Branne A. P. (Eds.), Coral reefs: Biology, threats and restoration. pp. 77-92. Nova Publishers.
  • Palacios S. L. & Zimmerman R. C., 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series 344:1-13.
  • Parker L. M., Ross P. M. & O’Connor W. A., 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology 15(9): 2123-2136
  • Parker L. M., Ross P. M. & O’Connor W. A., 2010. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology 157(11): 2435-2452
  • Parker L. M., Ross P. M. & O’Connor W. A., 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Biomedical and Life Sciences 158(3):689-697
  • Parker L. M., Ross P. M., O’Connor W. A., Borysko L., Raftos D. A. & Pörtner H.-O., in press. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology doi:10.1111/j.1365-2486.2011.02520.x
  • Place S. P. & Smith B. W., 2012. Effects of seawater acidification on cell cycle control mechanisms in Strongylocentrotus purpuratus embryos. PLoS ONE 7(3): e34068.
  • Poore A. G. B., Graba-Landry A., Favret M., Sheppard Brennand H., Byrne M. & Dworjanyn S. A., 2013. Direct and indirect effects of ocean acidification and warming on a marine plant–herbivore interaction. Oecologia 173(3): 1113-1124.
  • Porzio L. , Garrard S. L. & Buia M. C., 2013. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology 160(8): 2247-2259.
  • Putnam H. M., Mayfield A. B., Fan T. Y., Chen C. S., & Gates R. D., 2012. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Marine Biology 160(8), 2157-2173.
  • Raz B.-A., Ido S., Noam M., Oded N. & Ori L., 2013. Effects of sub-lethal CO2(aq) concentrations on the performance of intensively reared gilthead seabream (Sparus aurata) in brackish water: flow-through experiments and full-scale RAS results. Aquacultural Engineering 56:18–25.
  • Rose J. M., Feng Y., Gobler C. J., Gutierrez R., Hare C. E., Leblanc K. & Hutchins D. A., 2009. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Marine Ecology Progress Series 388: 27-40
  • Rossoll D., Bermúdez R., Hauss H., Schulz K. G., Riebesell U., Sommer U. & Winder M., 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7(4): e34737. doi: 10.1371/journal.pone.0034737.
  • Russell A. D. & Spero H. J., 2000. Field examination of the oceanic carbonate ion effect on stable isotopes in planktonic foraminifera. Paleoceanography 15:43-52.
  • Russell B. D., Connell S. D., Uthicke S., Muehllehner N., Fabricius K. E. & Hall-Spencer J. M., 2013. Future seagrass beds: can increased productivity lead to increased carbon storage? Marine Pollution Bulletin 73(2): 463–469.
  • Russell B. D., Passarelli C. A. &  Connell S. D., in press. Forecasted CO2 modifies the influence of light in shaping subtidal habitat. Journal of Phycology. doi: 10.1111/j.1529-8817.2011.01002.x
  • Semesi S., Kangwe, J. & Björk, M., in press., 2009. Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science 84:337-341.
  • Sheppard Brennand H., Soars N., Dworjanyn S. A., Davis A. R. & Byrne M., 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLOS ONE 5(6):e11372.
  • Shi D., Xu, Y., Hopkinson B. M. & Morel F. M. M., 2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327(5966): 676-679
  • Spicer J. I. & Widdicombe S., 2012. Acute extracellular acid–base disturbance in the burrowing sea urchin Brissopsis lyrifera during exposure to a simulated CO2 release. Science of The Total Environment 427: 203-207. doi: 10.1016/j.scitotenv.2012.02.051.
  • Silverman J., Kline D. I., Johnson L., Rivlin T., Schneider K., Erez J., Lazar B. & Caldeira K., 2012. Carbon turnover rates in the One Tree Island reef: a 40-year perspective. Journal of Geophysical Research 117: G03023. doi:10.1029/2012JG001974.
  • Spicer J. I., Widdicombe S., Needham H. R. &  Berge J. A., 2011. Impact of CO2-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. Journal of Experimental Marine Biology and Ecology 407(1):19-25
  • Strobel, A. Hu M. Y. A., Gutowska M. A., Lieb B., Lucassen M., Melzner F., Pörtner H. O. & Mark F. C., 2012. Influence of temperature, hypercapnia, and development on the relative expression of different hemocyanin isoforms in the common cuttlefish Sepia officinalis. Journal of Experimental Zoology 317(8):511-23. doi: 10.1002/jez.1743.
  • Suffrian K., Schulz K. G., Gutowska M. A., Riebesell U. & Bleich M., 2011. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist 190(3):596-608
  • Suggett D. J., Hall-Spencer J. M., Rodolfo-Metalpa R., Boatman T. G., Payton R., Tye Pettay D., Johnson V. R., Warner M. E. & Lawson T., 2012. Sea anemones may thrive in a high CO2 world. Global Change Biology 18(10): 3015-3025. doi: 10.1111/j.1365-2486.2012.02767.x
  • Sunday J. M., Crim R. N., Harley C. D. G. &  Hart M. W., 2011. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6(8): e22881
  • Taddei D., Cuet P., Frouin P., Esbelin C. & Clavier J., 2008. Low community photosynthetic quotient in coral reef sediments. C. R. Biologies 331: 668-677. doi:10.1016/j.crvi.2008.06.006
  • Takahashi A. & Kurihara H., 2013. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment.Coral Reefs 32(1): 305-314.
  • Talmage S. C. & Gobler C. J., 2012. Effects of CO2 and the harmful algaAureococcus anophagefferens on growth and survival of oyster and scallop larvae. Marine Ecology Progress Series 464:121-134.
  • Towanda T. & Thuesen E. V., 2012. Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissimaBiology Open 1(7): 615-621. doi: 10.1242/​bio.2012521.
  • Troedsson C., Bouquet J.-M., Lobon C. M., Novac A., Nejstgaard J. C., Dupont S., Bosak S., Jakobsen H. H., Romanova N., Pankoke L. M., Isla A., Dutz J., Sazhin A. F. & Thompson E. M., 2013. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: a mesocosm study. Marine Biology 160(8): 2175-2187.
  • Tseng Y.-C., Hub M. Y., Stumpp M., Lina L.-Y., Melzner F. & Hwang P.-P., 2013. CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 165(2):119-130.
  • Van Colen C., Debusschere E., Braeckman U., Van Gansbeke D. & Vincx M., 2012. The early life history of the clam Macoma balthica in a high CO2 world. PLoS ONE 7(9): e44655. doi:10.1371/journal.pone.0044655
  • Venn A., Tambutté E., Holcomb M., Allemand D. &  Tambutté S., 2011. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6(5):e20013
  • Vogel N. & Uthicke S., 2012. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. Journal of Experimental Marine Biology and Ecology 424-425: 15-24.
  • Wang Y., Smith Jr. W. O., Wang X. & Li S., 2010. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species. Geophysical Research Letters 37:L09604
  • Watson S.-A., Southgate P. C., Tyler P. A. & Peck L. S., 2009. Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. Journal of Shellfish Research 28(3):431-437
  • Webster N. S., Negri A. P., Flores F., Humphrey C., Soo R., Botté E. S., Vogel N. & Uthicke S., 2013. Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa. Environmental Microbiology Reports 5(2): 243-251. doi: 10.1111/1758-2229.12006.
  • Webster N. S., Uthicke S., Botté E., Flores F. & Negri A. P., 2013. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology 19(1): 303-315. doi: 10.1111/gcb.12008.
  • White M. M., McCorkle D. C., Mullineaux L. S. & Cohen A. L., 2013. Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE 8(4): e61065. doi:10.1371/journal.pone.0061065.
  • Wolfe K., Dworjanyn S. A. & Byrne M., 2013. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Global Change Biology 19(9): 2698-2707.
  • Wolfe K., Smith A. M., Trimby P. & Byrne M., 2012. Vulnerability of the paper nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution. Biological Bulletin 223(2): 236-244.
  • Wood H. L., Spicer J. I., Kendall M. A., Lowe D. M. & Widdicombe S., 2011. Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biology 34(7):1033-1044
  • Yu P. C., Matson P. G., Martz T. R. & Hofmann G. E., 2011. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. Journal of Experimental Marine Biology and Ecology 400(1-2):288-295
  • Yu P. C., Sewell M. A., Matson P. G., Rivest E. B., Kapsenberg L., Hofmann G., 2013. Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2. PLoS ONE 8(1): e52448. doi:10.1371/journal.pone.0052448.

 

Data lost

  • Broecker W. S., Langdon C. & Takahashi T., 2001. Factors controlling the rate of CaCO3 precipitation on Great Bahama Bank. Global Biogeochemical Cycles 15:589-596.
  • Burkhardt S., Amoroso G., Riebesell U. & Sültemeyer D., 2001. CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations. Limnology and Oceanography 46:1378-1391.
  • Burkhardt S. & Riebesell U., 1997. CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Marine Ecology Progress Series 155:67-76.
  • Burkhardt S., Riebesell U. & Zondervan I., 1999. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta 63:3729-3741.
  • Burkhardt S., Riebesell U. & Zondervan I., 1999. Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availability. Marine Ecology Progress Series 184:31-41.
  • Burkhardt S., Zondervan I. & Riebesell U., 1999. Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: a species comparison. Limnology and Oceanography 44:683-690.
  • Chen X. & Gao, K., 2003. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum. Chinese Science Bulletin 48:2616-2620.
  • Gao K., Aruga Y., Asada K., Ishihara T., Akano T. & Kiyohara M., 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high C02 concentrations. Journal of Applied Phycology 3:355-362.
  • Gao K., Ji Y. & Aruga Y., 1999. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia 398/399:355-359.
  • Langer G., Geisen M., Baumann K. H., Klas J., Riebesell U., Thoms S. & Young J. R., 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems 7, Q09006.
  • Riebesell U., Wolf-Gladrow D. A. & Smetacek V., 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249-251.
  • Riebesell U., Zondervan I., Rost B. & Zeebe R. E., 2001. Effects of increasing atmospheric CO2 on phytoplankton communities and the biological carbon pump. Global Change Newsletter 47:12-15.
  • Rost B. R., K.-U., Riebesell U. & Hansen P. J., 2006. Inorganic carbon acquisition in red tide dinoflagellates. Plant, Cell and Environment 29:810–822.
  • Rost B., Riebesell U. & Burkhardt B., 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48:55–67.
  • Rost B., Riebesell U. & Sültemeyer D., 2006. Carbon acquisition of marine phytoplankton: Effect of photoperiod length. Limnology and Oceanography 51:12–20.

 

Less than two carbonate system parameters were measured

  • Ahn Y.-B., Cho H.-B., Min B. R. & Choi Y.-K., 1999. Effects of acidification on the changes of microbial diversity in aquatic microorganisms. Korean Journal of Biological Sciences 3:153-159.
  • Alenius B. & Munguia P., 2012. Effects of pH variability on the intertidal isopod, Paradella dianae. Marine and Freshwater Behaviour and Physiology 45(4): 245-259.
  • Almut G. & Bamber S., 2013. Behavioural responses of Crangon crangon (Crustacea, Decapoda) to reduced seawater pH following simulated leakage from sub-sea geological storage. Journal of Environmental Protection 4(7A): 61-67.
  • Amado-Filho G. M., Moura R. L., Bastos A. C., Salgado L. T., Sumida P. Y., Guth A. Z., Francini-Filho R. B., Pereira-Filho G. H., Abrantes D. P., Brasileiro P. S., Bahia R. G., Leal R. N., Kaufman L. , Kleypas J. A., Farina M. & Thompson F. L., 2012. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7(4): e35171.
  • Amaral V., Cabral H. N. & Bishop M. J., in press. Resistance among wild invertebrate populations to recurrent estuarine acidification. Estuarine, Coastal and Shelf Science doi:10.1016/j.ecss.2011.05.024.
  • Barry J. P., Buck K. R., Lovera C., Brewer P. G., Seibel B. A., Drazen J. C., Tamburri M. N., Whaling P. J., Kuhnz L. & Pane E., 2013. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration. Deep Sea Research Part II: Topical Studies in Oceanography 92: 249–260.
  • Battistoni M., Fitzgerald K. & Kelson S., 2011. Effects of ocean acidification on a turtle grass meadow. Dartmouth Undergraduate Journal of Science XIII(3):40-42.
  • Barry S. C., Frazer T. K. & Jacoby C. A., 2013. Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. Journal of Experimental Marine Biology and Ecology 444: 73–80.
  • Bayraktarov E., Price R. E., Ferdelman T. G. & Finster K., 2013. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece). Frontiers in Extreme Microbiology 4: 111. doi: 10.3389/fmicb.2013.00111.
  • Beare D., McQuatters-Gollop A., van der Hammen T., Machiels M., Teoh S. J & Hall-Spencer J. M., 2013. Long-term trends in calcifying plankton and pH in the North Sea. PLoS ONE 8(5): e61175. doi:10.1371/journal.pone.0061175.
  • Bellissimo G., Rull Lluch J., Tomaselloa A. & Calvo S., in press. The community of Cystoseira brachycarpa J. Agardh emend. Giaccone (Fucales, Phaeophyceae) in a shallow hydrothermal vent area of the Aeolian Islands (Tyrrhenian Sea, Italy). Plant Biosystems.
  • Bernard O., Sciandra A. & Rabouille S., 2009. Carbon fixation prediction during a bloom of Emiliania huxleyi is highly sensitive to the assumed regulation mechanism. Biogeosciences Discussions 6:5339-5372.
  • Bernhard J. M., Mollo-Christensen E., Eisenkolb N. & Starczak, V. R., 2009. Tolerance of allogromiid Foraminifera to severely elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations. Global and Planetary Change. 65:107-114.
  • Buitenhuis E. T., de Baar H. J. W. & Veldhuis M. J. W., 1999. Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology 35:949–959.
  • Chapman R. W., Mancia A., Beal M., Veloso A., Rathburn C., Blair A., Holland A. F., Warr G. W., Didinato G., Sokolova I. M., Wirth E. F., Duffy E. & Sanger D., in press. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions. Molecular Ecology doi:10.1111/j.1365-294X.2011.05018.x.
  • Chen T., Li S. & Yu K., 2013. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development. Coral Reefs 32(1): 101-108. doi: 10.1007/s00338-012-0946-4.
  • Ciapa B. & Philippe L., 2013. Intracellular and extracellular pH and Ca are bound to control mitosis in the early sea urchin embryo via ERK and MPF activities. PLoS ONE 8(6): e66113. doi:10.1371/journal.pone.0066113.
  • Clark D., Lamare M. & Barker M., 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Marine Biology 156:1432-1793.
  • Couto R. P., Neto A. I. & Rodrigues A. S., 2009. Metal concentration and structural changes in Corallina elongata (Corallinales, Rhodophyta) from hydrothermal vents. Marine Pollution Bulletin 60:509-5014.
  • Cruz Payán M., Galan B., Coz A., Vandecasteele C. & Viguri J. R., 2012. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO2 leakages from Carbon Capture and Storage sites. Environmental Pollution 171: 174–184.
  • Cullen J. T., Lane T. W., Morel F. M. M. & Sherrell R. M., 1999. Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165-167.
  • Cullen J. T. & Sherrell R. M., 2005. Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnology and Oceanography 50:1193-1204.
  • Dashfield S. L., Somerfield P. J., Widdicombe S., Austen M. C. & Nimmo M., 2008. Impacts of ocean acidification and burrowing urchins on within-sediment pH profiles and subtidal nematode communities. Journal of Experimental Marine Biology and Ecology 365:46-52.
  • Dauphin Y., Ball A. B., Castillo-Michel H., Chevallard C., Cuif J.-P., Farre B., Pouvreau S. & Salomé M., 2013. In situ distribution and characterization of the organic content of the oyster shell Crassostrea gigas (Mollusca, Bivalvia).Micron 44: 373–383. doi: 10.1016/j.micron.2012.09.002.
  • de Moel H., Ganssen G. M., Peeters F. J. C., Jung S. J. A., Brummer G. J. A., Kroon D. & Zeebe R. E., 2009. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences 6:1917-1925.
  • De’ath G., Lough J. M. & Fabricius K. E., 2009. Declining coral calcification on the Great Barrier Reef. Science 323:116-119.
  • Deigweiher K., Hirse T., Bock C., Lucassen M. & Pörtner H.-O., 2010. Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 180:347-359.
  • Dixson D. L., Munday P. L. & Jones G. P., 2010. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecology Letters 13:68-75.
  • Dove M. C. & Sammut J., 2013. Acid sulfate soil induced acidification of estuarine areas used for the production of Sydney Rock oysters, Saccostrea glomerata. Journal of Water Resource and Protection 5(3A): 320-335.
  • Duckworth A. R., West L., Vansach T., Stubler A. & Hardt M., 2012. Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Marine Ecology Progress Series 462: 67-77.
  • Fitzer S. C., Bishop J. D. D., Caldwell G. S., Clare A. S., Upstill-Goddard R. C. & Bentley M. G., 2012. Visualisation of the copepod female reproductive system using confocal laser scanning microscopy and two-photon microscopy. Journal of Crustacean Biology 32(5):685-692.
  • Foster L. C., Schmidt D. N., Thomas E., Arndt S. & Ridgwell A., 2013. Surviving rapid climate change in the deep sea during the Paleogene hyperthermals. Proceedings of the National Academy of Sciences of USA 110(23): 9273–9276.
  • Freese D., Kreibich T. & Niehoff B., 2012. Characteristics of digestive enzymes of calanoid copepod species from different latitudes in relation to temperature, pH and food. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 162(4): 66–72. doi: 10.1016/j.cbpb.2012.04.007.
  • Frieder C. A., Nam S. H., Martz T. R. & Levin L. A., 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9: 3917-3930.
  • Glas M. S., Langer G. & Keul N., 2012. Calcification acidifies the microenvironment of a benthic foraminifer (Ammonia sp.). Journal of Experimental Marine Biology and Ecology 424-425: 53-58.
  • Godoi R. H. M., Aerts K., Harlay J., Kaegi R., Ro C.-U., Chou L. & Van Grieken R., 2009. Organic surface coating on Coccolithophores - Emiliania huxleyi: Its determination and implication in the marine carbon cycle. Microchemical Journal 91:266-271.
  • Grelaud M., Schimmelmann A., Beaufort L., 2009. Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917–2004. Biogeosciences 6:2025-2039.
  • Hardman-Mountford N. J., Moore, G., Bakker D. C. E., Watson, A. J., Schuster, U., Barciela, R., Hines, A., Moncoiffé, G., Brown, J., Dye, S., Blackford, J., Somerfield, P. J., Holt, J., Hydes, D. J. & Aiken, J., 2008. An operational monitoring system to provide indicators of CO2-related variables in the ocean. ICES Journal of Marine Science 1498-1503.
  • Helme K. P., Dodge R. E., Swart P. K., Gledhill D. K. & Eakin C. M., 2011. Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nature Communications 2:215.
  • Krause E., Wichels A., Giménez L., Lunau M., Schilhabel M. B. & Gerdts G., 2012. Small changes in pH have direct effects on marine bacterial community composition: a microcosm approach. PLoS ONE 7(10): e47035. doi:10.1371/journal.pone.0047035.
  • Kristin M. Hardy, Chandler R. Follett, Louis E. Burnett & Sean C. Lema, 2012. Gene transcripts encoding hypoxia-inducible factor (HIF) exhibit tissue- and muscle fiber type-dependent responses to hypoxia and hypercapnic hypoxia in the Atlantic blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 163(1): 137–146.
  • Hare C. E., Leblanc K., DiTullio G. R., Kudela R. M., Zhang Y., Lee P. A., Riseman S. & Hutchins D. A., 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series 352:9-16.
  • Hautmann M., Benton M. J. & Tomasovych A., 2008. Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 249:119-127.
  • Hauton C., Tyrrell T. & Williams J., 2009. The subtle effects of sea water acidification on the amphipod Gammarus locusta. Biogeosciences 6:1479-1489.
  • Helmle K. P., Dodge R. E., Swart P. K., Gledhill D. K., & Eakin C. M., 2011. Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nature Communications 2:215
  • Hervé V., Derr J., Douady S., Quinet M., Moisan L. & Lopez P. J., 2012. Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS ONE 7(10): e46722. doi:10.1371/journal.pone.0046722.
  • Heydari E., Arzani N. & Hassanzadeh J., 2008. Mantle plume: The invisible serial killer -- Application to the Permian-Triassic boundary mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 264:147-162.
  • Hiwatari T., Yuzawa A., Okazaki M., Yamamoto M., Akano T. & Kiyohara M., 1995. Effects of CO2 concentrations on growth in the coccolithophorids (Haptophyta). Energy Conversion and Management 36:779-782.
  • Holtmann W. C., Stumpp M., Gutowska M. A., Syré S., Himmerkus N., Melzner F. & Bleich M., 2013. Maintenance of coelomic fluid pH in sea urchins exposed to elevated CO2: the role of body cavity epithelia and stereom dissolution. Marine Biology 160(10): 2631-2645.
  • Huesemann M. H., Skillman A. D. & Crecelius E. A., 2002. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Marine Pollution Bulletin 44:142-148.
  • Hughes T. P., Baird, A. H., Dinsdale E. A., Moltschaniwskyj N. A., Pratchett M. S., Tanner J. E. & Willis B. L., 2012. Assembly rules of reef corals are flexible along a steep climatic gradient. Current Biology 22(8): 736–741. doi: 10.1016/j.cub.2012.02.068.
  • Hurd C. L., Cornwall C. E., Currie K., Hepburn C. D., McGraw C. M., Hunter K. A. & Boyd P. W., in press. Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Global Change Biology doi:10.1111/j.1365-2486.2011.02473.x
  • Jin P., Gao K. & Beardall J., 2013. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution 67(7): 1869–1878.
  • Kasemann S. A., Schmidt D. N., Bijma J. & Foster G. L., 2009. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chemical Geology 260:138-147.
  • Karlen D. J., Price R. E., Pichler T. & Garey J. R., 2010. Changes in benthic macrofauna associated with a shallow-water hydrothermal vent gradient in Papua New Guinea. Pacific Science 64(3):391-404
  • Keppel E. A., Scrosati R. A. & Courtenay S. C., 2012. Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. Journal of Northwest Atlantic Fishery Science 44: 61–66.
  • Kuroyanagi A., Kawahata H., Suzuki A., Fujita K. & Irie T., 2009. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Marine Micropaleontology 73:190-195.
  • Langer G., Geisen M., Baumann K. H., Klas J., Riebesell U., Thoms S. & Young J. R., 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems 7:Q09006.
  • Law C.S., Breitbarth E., Hoffmann L.J., McGraw C.M., Langlois R.J., LaRoche J., Marriner A. & Safi K.A., 2012. No stimulation of nitrogen fixation by non-filamentous diazotrophs under elevated CO2 in the South Pacific. Global Change Biology 18(10): 3004–3014. doi: 10.1111/j.1365-2486.2012.02777.x.
  • Lindh M.V., Riemann L., Baltar F., Romero-Oliva C., Salomon P. S., Granéli E. & Pinhassi J., 2013. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea. Environmental Microbiology Reports 5(2): 252–262.
  • Liu J. W., Maier C., Pedrotti M. L., Dai M. H., Gattuso J. P. & Weinbauer M. G., 2008. Effect of changes in pCO2 concentrations and temperature on prokaryotic growth in mesopelagic waters. ASLO 2009 Aquatic Sciences meeting, Nice.
  • Liu J., Allard, M., Maier, C., Pedrotti, M.-L., Dai, M., Gattuso, J.-P. & Weinbauer, M. G., 2009. Effects of elevated temperature and pCO2 on respiration in mesopelagic communities of the NW Mediterranean Sea. EPOCA first annual meeting, Plymouth.
  • Lombardi C., Gambi M. C., Vasapollo C., Taylor P. & Cocito S., 2011. Skeletal alterations and polymorphism in a Mediterranean bryozoan at natural CO2 vents. Zoomorphology 130(2):135-145.
  • Mari X., 2008. Does ocean acidification induce an upward flux of marine aggregates? Biogeosciences 5:1023-1031.
  • Marshall A. T. & Clode P. L., 2002. Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. The Journal of Experimental Biology 205:2017-2113.
  • Martinez J. A., Smith C. M. & Richmond R. H., in press. Invasive algal mats degrade coral reef physical habitat quality. Estuarine, Coastal and Shelf Science doi:10.1016/j.ecss.2011.12.022.
  • Marubini F., Barnett H., Langdon C. & Atkinson M. J., 2001. Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology Progress Series 220:153-162.
  • Marubini F. & Thake B., 1999. Bicarbonate addition promotes coral growth. Limnology and Oceanography 44:716-720.
  • Mattioli E., Pittet B., Petitpierre L. & Mailliot S., 2009. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Global and Planetary Change 65:134-145.
  • Mayor D. J., Matthews C., Cook K. L., Zuur A. F. & Hay S., 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus. Marine Ecology Progress Series 350:91-97.
  • Mcdonald M. R., McClintock J. B., Amsler C. D., Rittschof D., Angus R. A. & Orihuela B. 2009. Effects of ocean acidification on larval development and settlement of the common intertidal barnacle Amphibalanus amphitrite. Integrative and Comparative Biology 49: E270-E270
  • McKinnell S. & Christian J. R., 2009. Seasonal pH and aragonite saturation horizons in the Gulf of Alaska during the North Pacific Survey, 1956–1957. Biogeosciences Discussions 6:4587-4602.
  • Meron D., Atias E., Kruh L. I., Elifantz H., Minz D., Fine M. & Banin E., 2011. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. The ISME Journal 5:51–60.
  • Minillo A., Cardamoni Godoy H. & Graciano Fonseca G., 2013. Growth performance of microalgae exposed to CO2. Journal of Clean Energy Technologies 1(2): 110-114.
  • Moazami-Goudarzi M. & Colman B., 2012. Changes in carbon uptake mechanisms in two green marine algae by reduced seawater pH. Journal of Experimental Marine Biology and Ecology 413:94-99
  • Moran D. & Støttrup J. G., in press. The effect of carbon dioxide on growth of juvenile Atlantic cod Gadus morhua L. Aquatic Toxicology doi:10.1016/j.aquatox.2010.12.014
  • Matozzo V., Chinellato A., Munari M., Bressan M. & Marin M. G., 2013. Can the combination of decreased pH and increased temperature values induce oxidative stress in the clam Chamelea gallina and the mussel Mytilus galloprovincialis? Marine Pollution Bulletin 72(1): 34–40.
  • Matozzo V., Chinellato A., Munari M., Finos L., Bressan M. & Marin M. G., 2012. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7(3): e33820.
  • McCoy S. J., 2013. Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific. Journal of Phycology 49(5): 830–837.
  • Naylor M. A., Kaiser H. & Jones C. L. W., 2013. The effect of dosing with sodium hydroxide (NaOH−) on water pH and growth of Haliotis midae in an abalone serial-use raceway. Aquaculture International 21(2): 467-479. doi: 10.1007/s10499-012-9574-9.
  • Nguyen H. D., Doo1 S. S., Soars N. A. & Byrne M., 2012. Non-calcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar. Global Change Biology 18(8): 2466–2476. doi: 10.1111/j.1365-2486.2012.02714.x.
  • Nienhuis S. B., 2009. Multiple impacts of ocean acidification on calcifying marine invertebrates. MSc thesis.
  • O’Donnell M. J., Hammond L. M. & Hofmann G. E., 2009. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Marine Biology 156:1432-1793.
  • Pespeni M. H., Barney B. T. & Palumbi S. R., 2013. Differences in the regulation of growth and biomineralization genes revealed through long-term common garden acclimation and experimental genomics in the purple sea urchin. Evolution 67(7): 1901–1914.
  • Raffi I., Backman J., Zachos J. C. & Sluijs A., 2009. The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Marine Micropaleontology 70:201-212.
  • Raffi I., Backman J., Zachos J. C. & Sluijs A., 2009. The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Marine Micropaleontology 70(3-4): 201-212
  • Raffi I. & De Bernardi B., 2008. Response of calcareous nannofossils to the Paleocene–Eocene Thermal Maximum: Observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge — SW Atlantic). Marine Micropaleontology 69:119-138.
  • Richardson A. J. & Gibbons M. J., 2008. Are jellyfish increasing in response to ocean acidification? Limnology and Oceanography 53:2035–2040.
  • Signorini S. R. & McClain C. R., 2009. Environmental factors controlling the Barents Sea spring-summer phytoplankton blooms. Geophysical Research Letters 36:L10604.
  • Roberts D., Howard W. R., Moy A. D. , Roberts J. L., Trull T. W., Bray S. G. & Hopcroft R. R., in press. Interannual pteropod variability in sediment traps deployed above and below the aragonite saturation horizon in the Sub-Antarctic Southern Ocean. Polar Biology doi:10.1007/s00300-011-1024-z.
  • Rudd M., Jennette K., Duey B., Selman A. & Seron T. J., 2013. The effects of increased acidity on the shell integrity and body size of C. virginica. Journal of Young Investigators 25(2): 19-25.
  • Salma U., Uddowla H. Md., Lee G., Yeo Y. & Kim H.-W., 2012. Effects of pH change by CO2 induction and salinity on the hatching rate of Artemia franciscana. Fisheries and Aquatic Sciences 15(2): 177-181.
  • Schoo K. L., Malzahn A. M., Krause E. & Boersma M., 2013. Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Marine Biology 160(8): 2145-2155.
  • Seibel B. A., 2013. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding. Deep Sea Research Part II: Topical Studies in Oceanography 95: 139–144.
  • Shi Q., Yu K., Chen T., Zhang H., Zhao M. & Yan H., in press. Two centuries-long records of skeletal calcification in massive Porites colonies from Meiji Reef in the southern South China Sea and its responses to atmospheric CO2 and seawater temperature. Science China Earth Sciences. doi: 10.1007/s11430-011-4320-0.
  • Shin H. H., Jung S. W. & Jang M.-C. & Kim Y.-O., 2013. Effect of pH on the morphology and viability of Scrippsiella trochoidea cysts in the hypoxic zone of a eutrophied area. Harmful Algae 28: 37-45.
  • Smith A. M. & Lawton E. I., 2010. Growing up in the temperate zone: Age, growth, calcification and carbonate mineralogy of Melicerita chathamensis (Bryozoa) in southern New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 298(3-4):271-277.
  • Smith A. M., Wolfe K. & Byrne M., 2012. Argonauta at risk: dissolution and carbonate mineralogy of egg cases. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012. 8D Effects of ocean acidification. 5 pp.
  • Suharsono & Sri Yudawati Cahyarini, 2012. Reduced trends of annual growth of Indonesian Porites over ~20 years. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012. 8D Effects of ocean acidification. 5 pp.
  • Sundin J., Rosenqvist G. & Berglund A., 2013. Altered oceanic pH impairs mating propensity in a pipefish. Ethology 119: 86–93.
  • Thurber R. V., Willner-Hall D., Rodriguez-Mueller B., Desnues C., Edwards R. A., Angly F., Dinsdale E., Kelly L. & Rohwer F., 2009. Metagenomic analysis of stressed coral holobionts. Environmental Microbiology 11:2148-2163.
  • Todgham A. E., & Hofmann G. E., 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. Journal of Experimental Biology 212:2579-2594.
  • Toonen R. J., Nakayama T., Ogawa T., Rossiter A. & Delbeek J. C., 2012. Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater: species-specific effects of substrate and supplemental feeding under acidification. Journal of the Marine Biological Association of the United Kingdom 92: 731–740.
  • Tortell P. D., Payne C. D., Li Y. Y., Trimborn S., Rost B., Smith W. O., Riesselman C., Dunbar R. B., Sedwick P. & DiTullio G. R., 2008. CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters 35:L04605.
  • Vehmaa A., Brutemark A. & Engström-Öst J., 2012. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7(10): e48538. doi:10.1371/journal.pone.0048538.
  • Veloza A. J., Chu F.-L. E. & Tang K. W., 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Marine Biology 148:779-788.
  • Vizzini S., Tomasello A., Maida G. D., Pirrotta M., Mazzola A. & Calvo S., 2010. Effect of explosive shallow hydrothermal vents on δ13C and growth performance in the seagrass Posidonia oceanica. Journal of Ecology 98: 1284–1291
  • Wallenstein F. M., Couto R. P., Torrão D. F., Neto A. I., Rodrigues A. S. & Wilkinson M., 2013. Intertidal rocky shore seaweed communities subject to the influence of shallow water hydrothermal activity in São Miguel (Azores, Portugal). Helgoland Marine Research 67(3): 535-543.
  • Watson S.-A., Peck L. S., Tyler P. A., Southgate P. C., Tan K. S., Day R. W. & Morley S. A., 2012. Marine invertebrate skeleton size varies with latitude, temperature, and carbonate saturation: implications for global change and ocean acidification. Global Change Biology 18(10): 3026–3038.
  • Wei G., McCulloch M. T., Mortimer G., Deng W. & Xie L., 2009. Evidence for Ocean Acidification in the Great Barrier Reef of Australia. Geochimica et Cosmochimica Acta 73:2332-2346.
  • Welladsen, H. M., Southgate, P. C. & Heimann, K., 2010. The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae). Molluscan Research 30(3): 125-130
  • Weydmann A., Søreide J. E., Kwasniewski S. & Widdicombe S., 2012. Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. Journal of Experimental Marine Biology and Ecology 428: 39-42.
  • Wootton J. T., Pfister, C. A. & Forester, J. D., 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Science U.S.A. 105:18848-18853.
  • Zou D. & Gao K., 2005. Effects of elevated CO2 concentration on the photosynthesis and related physiological processes in marine macroalgae. Acta ecologica sinica/Shengtai Xuebao 22:1750-1757.
  • Xu Y., Shi D., Aristilde L. & Morel F. M. M., 2012. The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: Possible role of weak complexes. Limnology and Oceanography 57(1):293-304
  • Yildiz G., Hofmann L. C., Bischof K. & Dere S., 2013. Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2. Botanica Marina 56(2): 161–168.
  • Young J. N., Bruggeman J., Rickaby R. E. M. Erez J. & Conte M., 2013. Evidence for changes in carbon isotopic fractionation by phytoplankton between 1960 and 2010. Global Biogeochemical Cycles 27(2): 505–515.
  • Yu J., Zhang Y., Yang G. P. & Tian Y. W., 2012. Effects of ocean acidification on growth, phosphate and nitrate uptake of macroalgae. Huan Jing Ke Xue 33(10): 3352-3360.