Indigenous preparation of therapeutic doses of ^{131}I-MIBG (Metaiodobenzylguanidine) injection for treatment of Pheochromocytoma /Neuroblastoma - Indian Experience

G. Prabhakar, Anupam Mathur, G. Shunmugam, Yashwant D. Teje, Satbir S. Sachdev & N. Sivaprasad

Board of Radiation and Isotope Technology (BRIT)
Department of Atomic Energy (DAE), BARC
Navi Mumbai, India
131I-MIBG (Metaiodobenzylguanidine)

Proven radiopharmaceutical for the diagnosis and therapy of Neuroendocrine tumors in particular, Adrenal medullae tumours (Phaeochromocytoma, Neuroblastoma) and their metastasis

Mechanism of uptake

Structural similarity to adrenaline and noradrenaline responsible for uptake and storage in cells of the sympathetic nerve endings or neuroendocrine tumors
Aim

Indigenous synthesis of therapeutic doses of 131I-MIBG injection for the regular supply to various Nuclear Medicine Centers in India

131I-MIBG injection, diagnostic doses are available from BRIT, India since 1999
Present work

✓ MIBG Ligand

✓ Radiolabeling

✓ Purification

✓ Formulation, Sterilization and Aseptic dispensing

✓ Quantification of purity/stability
Synthesis

m-Iodobenzylamine + NH₂CN → 100-135°C → 4 h → Cyanamide

Characterization: mp, IR & ¹H-NMR

Presently it is being procured from ABX chemicals, Germany
Radiolabeling*

(I) NH NH

(2-4 mg) \(\text{(500-1000mCi)} \)

(0.4-0.5 ml)

Sodium Acetate solution is added to reaction vial after cooling (pH 5)

Characterization by Electrophoresis and chromatographic techniques

Purification

Ion-exchange chromatography using Dowex-1 (8%, 200-400)

Pure 131I-MIBG obtained in acetate buffer at pH 5
Formulation

- Pure product formulated in isotonic saline (Radioactive conc. ~15 mCi/ml on the day of preparation)
- Benzyl alcohol (0.9%) as radioprotectant

Sterilization

- Membrane filtration using pre-sterilized 0.22µM filter assembly
- Aseptic dispensing in multi dose vials & sealing
Quality Assurance Control
(Good Manufacturing Practices)

Aseptic Requirements - Production

- Sterile Glass wares
- Sterile Filters
- Fumigation of the production plant
- UV lamp
- Exposing media plate in working environment

Quality Control

Physicochemical control:
- Clarity
- pH
- Radioactive Concentration
- Radionuclidic Purity
- Radiochemical Purity

Micro biological control:
- Sterility test
- BET test

Environmental control
- Spore strip/ Biological indicator
- Biological media
Characterization

Electrophoresis (0.05 M NaOAc solution, 300 V, 30 min)

Radiolabelled reaction mixture

Pure product

Chromatographic techniques

PC: PrOH:NH₃ (3:1)

TLC: Solvent - EtoAc:EtOH (1:1)
Results

Quality Parameters of 131I-mIBG injection **

<table>
<thead>
<tr>
<th>No of Batches</th>
<th>Radioactive concentration (mCi/ml)</th>
<th>Specific Activity (mCi/mg)</th>
<th>% Radiochemical Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>11 – 15</td>
<td>60-150</td>
<td>97.2-99.1</td>
</tr>
</tbody>
</table>

** Therapeutic doses : 40 x 100 mCi each
Typical batch stability data of Therapeutic 131I-MIBG

<table>
<thead>
<tr>
<th>Room temperature stability</th>
<th>Stability at -70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RAC: ~15 mCi/ml)</td>
<td>(RAC: ~15 mCi/ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Time</th>
<th>$%^{131}$I (free I⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45 min</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>2 h</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>3 h</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>24 h</td>
<td>17.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Time</th>
<th>$%^{131}$I (free I⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 day</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>3 day</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>5 day</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>7 day</td>
<td>4.3</td>
</tr>
</tbody>
</table>

* with radioprotectant
Recovery yields

<table>
<thead>
<tr>
<th>Source of Raw material 131I</th>
<th>RAC of 131I (mCi/ml)</th>
<th>% pure product recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhruva Reactor, BARC</td>
<td>700-1500</td>
<td>35-45</td>
</tr>
<tr>
<td>Fission Produced (Imported)</td>
<td>2000-3000</td>
<td>50-60</td>
</tr>
</tbody>
</table>
131I-MIBG - Therapeutic challenges???

Handling of higher radioactivities
Rapid radiolytic damage at room temperature

Full/semi automated gadgets/techniques—minimize exposure (ALARA) and time

Operation protocol—By modules
Standard Operating Protocol (Three Modules)

First Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Process</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry heat bath</td>
<td>Radiolabelling</td>
<td>50</td>
</tr>
</tbody>
</table>
Second Module

<table>
<thead>
<tr>
<th>Module</th>
<th>Process</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum in line assembly</td>
<td>Purification, Formulation & Sterilization</td>
<td>10</td>
</tr>
</tbody>
</table>

Pure product after ion exchange purification is sent for storage at -70°C within 30 min preventing less radiolytic damage.
<table>
<thead>
<tr>
<th>Module</th>
<th>Process</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma sterilized Combination seals and Pneumatic capping device</td>
<td>Aseptic dispensing & sealing</td>
<td>10</td>
</tr>
</tbody>
</table>
Product Specifications

\(^{131}\text{I} -\text{Meta iodobengyl guanidine} \ [\text{MIBG}] \text{ injection} \)
(therapeutic doses)

- **Appearance**: Clear Colorless solution
- **pH**: 3.5 – 8
- **Radiochemical Purity**: Not less than 94%
- **Radioactive Concentration**: 5-15mCi/ml on the date of preparation
- **Specific activity**: >10 mCi/mg on expiry date
- **Date of Expiry**: 5 days from the date of preparation
- **Sterility**: Sterile
- **Endotoxin**: as per RPC monograph
- **Storage**: Deep freezer, below -20°C
- **Shipping**: In dry ice with adequate lead shielding (Type-A package)
Conclusions

✓ Regular production of Therapeutic 131I-MIBG injection for 3-5 patient doses (100 mCi each) is prepared and supplied every month

✓ Product complies with the specifications of British Pharmacopoeia product

✓ Overall batch recoveries of 131I-MIBG are between 40-60%

✓ Stability of the product is “not less than 94%” for a period of 7 days, when stored below -20°C

✓ Approved by Radiopharmaceutical Committee (RPC), India for regular production & supply

✓ Regular supplies from January 2008
Thankyou for your kind attention!